In this work, the nonexistence of limit cycles for classes of p − qquasi-homogeneous polynomial planar systems of weighted degree l is established. Furthermore, we rule out the existence of limits cycles for certain perturbations of such planar systems. We present applications and examples in order to illustrate our results.
Abstract. In this work, we prove the existence of limit cycles in planar systems that can be written as appropriate perturbations of Hamiltonian systems. In particular, we obtain criteria for the existence of limit cycles for Liénard-type systems. We present examples in order to illustrate our results. Keywords: Poincaré-Bendixson theorem, trapping region, Liénard equation, limit cycles. MSC2010: 34C07, 34C05, 34C25. Sobre la existencia de ciclos límite de ciertos campos vectoriales en el planoResumen. En este trabajo, demostramos la existencia de ciclos límite en sistemas planos que pueden escribirse como perturbaciones apropiadas de sistemas Hamiltonianos. En particular, obtenemos criterios de existencia de ciclos límite para sistemas tipo Liénard. Además, presentamos algunos ejemplos con el fin de ilustrar los resultados obtenidos. Palabras clave: Teorema de Poincaré-Bendixson, anillo invariante, ecuación de Liénard, ciclos límite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.