This work proposes a new neural network feature representation that help to leave out sensitive information in the decision-making process of pattern recognition and machine learning algorithms. The aim of this work is to develop a learning method capable to remove certain information from the feature space without drop of performance in a recognition task based on that feature space. Our work is in part motivated by the new international regulation for personal data protection, which forces data controllers to avoid discriminative hazards while managing sensitive data of users. Our method is based on a triplet loss learning generalization that introduces a sensitive information removal process. The method is evaluated on face recognition technologies using state-of-the-art algorithms and publicly available benchmarks. In addition, we present a new annotation dataset with balanced distribution between genders and ethnic origins. The dataset includes more than 120K images from 24K identities with variety of poses, image quality, facial expressions, and illumination. The experiments demonstrate that it is possible to reduce sensitive information such as gender or ethnicity in the feature representation while retaining competitive performance in a face recognition task.
The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, Presentation Attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. The biometrics community has thus made a considerable effort to the development of automatic Presentation Attack Detection (PAD) mechanisms, for instance through the international LivDet competitions.In this context, we present a novel fingerprint PAD scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and ii) an in-depth analysis of several state-of-the-art techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.36% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks).
This paper describes the design, acquisition process and baseline evaluation of the new e-BioSign database, which includes dynamic signature and handwriting information. Data is acquired from 5 different COTS devices: three Wacom devices (STU-500, STU-530 and DTU-1031) specifically designed to capture dynamic signatures and handwriting, and two general purpose tablets (Samsung Galaxy Note 10.1 and Samsung ATIV 7). For the two Samsung tablets, data is collected using both pen stylus and also the finger in order to study the performance of signature verification in a mobile scenario. Data was collected in two sessions for 65 subjects, and includes dynamic information of the signature, the full name and alpha numeric sequences. Skilled forgeries were also performed for signatures and full names. We also report a benchmark evaluation based on e-BioSign for person verification under three different real scenarios: 1) intra-device, 2) inter-device, and 3) mixed writing-tool. We have experimented the proposed benchmark using the main existing approaches for signature verification: feature- and time functions-based. As a result, new insights into the problem of signature biometrics in sensor-interoperable scenarios have been obtained, namely: the importance of specific methods for dealing with device interoperability, and the necessity of a deeper analysis on signatures acquired using the finger as the writing tool. This e-BioSign public database allows the research community to: 1) further analyse and develop signature verification systems in realistic scenarios, and 2) investigate towards a better understanding of the nature of the human handwriting when captured using electronic COTS devices in realistic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.