Previous studies have observed changes in the lacrimal gland and ocular surface related to diabetes mellitus and related it to insulin resistance or insufficiency and oxidative damage. The aim of this study was to evaluate whether insulin treatment inhibits those changes. Diabetes was induced in male Wistar rats with a single intravenous injection of streptozotocin and a subgroup was treated with insulin. After 5 and 10 weeks, the three groups (n = 5-10/group/experimental procedure) were compared for biochemical, functional, and histological parameters. After 5 weeks, changes in morphology and increased numbers of lipofucsin-like inclusions were observed in lacrimal glands of diabetic but not insulin-treated rats. After 5 weeks, malonaldehyde and total peroxidase activity were significantly higher in diabetic rats, but similar to control in insulin-treated diabetic rats (P = 0.03, P = 0.02, respectively). Our data indicate that diabetes induces histological alterations in lacrimal gland and suggests that hyperglycemia-related oxidative stress may participate in diabetic dry eye syndrome. Prevention by insulin replacement suggests direct hormone action and/or benefit by early sub optimal metabolic control.
The trabecular meshwork (TM) is the main outflow pathway in the mammalian eye. Oxidative damage to TM cells has been suggested to be an important cause of impairment of TM functions, leading to deficient drainage of aqueous humor, with deleterious consequences to the eye. Transferrin, a metalloprotein involved in iron transport, has been characterized as an intrinsic eye protein. Since transferrin is implicated in the control of oxidative stress, the objective of the present study was to determine if a bovine TM cell line (CTOB) synthesizes and secretes transferrin. The CTOB cell line was cultured in the presence of 35 S-methionine and the incubation medium was submitted to immunoprecipitation. Total RNAs from CTOB and isolated bovine TM (freshly isolated, incubated or not) were subjected to the reverse transcription-polymerase chain reaction and the amplification products were sequenced. Also, both CTOB and histological TM preparations were processed for transferrin immunolocalization. A labeled peptide of about 80 kDa, the expected size for transferrin, was immunopurified from CTOB samples obtained from the incubation assays. The reverse transcription-polymerase chain reaction and sequencing experiments detected the presence of transferrin mRNA in CTOB and isolated bovine TM. Reactivity to antibodies against transferrin was observed both in CTOB and TM. The results obtained in all of these experiments indicated that the TM is capable of synthesizing and secreting transferrin. The possible implications for the physiology of the eye are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.