We study combinatorial indicators related to the characteristic phase transitions associated with coloring a graph optimally and finding a maximum independent set. In particular, we investigate the role of the acyclic orientations of the graph in the hardness of finding the graph's chromatic number and independence number. We provide empirical evidence that, along a sequence of increasingly denser random graphs, the fraction of acyclic orientations that are "shortest" peaks when the chromatic number increases, and that such maxima tend to coincide with locally easiest instances of the problem. Similar evidence is provided concerning the "widest" acyclic orientations and the independence number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.