Direct-acting antiviral agents (DAAs) for hepatitis C treatment tend to fare better in individuals who are also likely to respond well to interferon-alpha (IFN), a surprising correlation given that DAAs target specific viral proteins whereas IFN triggers a generic antiviral immune response. Here, we posit a causal relationship between IFN-responsiveness and DAA treatment outcome. IFN-responsiveness restricts viral replication, which would prevent the growth of viral variants resistant to DAAs and improve treatment outcome. To test this hypothesis, we developed a multiscale mathematical model integrating IFN-responsiveness at the cellular level, viral kinetics and evolution leading to drug resistance at the individual level, and treatment outcome at the population level. Model predictions quantitatively captured data from over 50 clinical trials demonstrating poorer response to DAAs in previous non-responders to IFN than treatment-naïve individuals, presenting strong evidence supporting the hypothesis. Model predictions additionally described several unexplained clinical observations, viz., the percentages of infected individuals who 1) spontaneously clear HCV, 2) get chronically infected but respond to IFN-based therapy, and 3) fail IFN-based therapy but respond to DAA-based therapy, resulting in a comprehensive understanding of HCV infection and treatment. An implication of the causal relationship is that failure of DAA-based treatments may be averted by adding IFN, a strategy of potential use in settings with limited access to DAAs. A second, wider implication is that individuals with greater IFN-responsiveness would require shorter DAA-based treatment durations, presenting a basis and a promising population for response-guided therapy.
Antiretroviral therapy (ART) for HIV-1 infection is lifelong. Stopping therapy typically leads to the reignition of infection and progressive disease. In a major breakthrough, recent studies have shown that early initiation of ART can lead to sustained post-treatment control of viremia, raising hopes of long-term HIV-1 remission. ART, however, elicits post-treatment control in a small fraction of individuals treated. Strikingly, passive immunization with broadly neutralizing antibodies (bNAbs) of HIV-1 early in infection was found recently to elicit longterm control in a majority of SHIV-infected macaques, suggesting that HIV-1 remission may be more widely achievable. The mechanisms underlying the control elicited by bNAb therapy, however, remain unclear. Untreated infection typically leads to progressive disease. We hypothesized that viremic control represents an alternative but rarely realized outcome of the infection and that early bNAb therapy triggers a dynamical switch to this outcome. To test this hypothesis, we constructed a model of viral dynamics with bNAb therapy and applied it to analyse clinical data. The model fit quantitatively the complex longitudinal viral load data from macaques that achieved lasting control. The model predicted, consistently with our hypothesis, that the underlying system exhibited bistability, indicating two potential outcomes of infection. The first had high viremia, weak cytotoxic effector responses, and high effector exhaustion, marking progressive disease. The second had low viremia, strong effector responses, and low effector exhaustion, indicating lasting viremic control. Further, model predictions suggest that early bNAb therapy elicited lasting control via pleiotropic effects. bNAb therapy lowers viremia, which would also limit immune exhaustion. Simultaneously, it can improve effector stimulation via cross-presentation. Consequently, viremia may resurge post-therapy, but would encounter a primed effector population and eventually get controlled. ART suppresses viremia but does not enhance effector stimulation, explaining its limited ability to elicit post-treatment control relative to bNAb therapy.
The advent of powerful direct-acting antiviral agents (DAAs) has revolutionized the treatment of hepatitis C. DAAs cure nearly all patients with short duration, oral treatments. Significant efforts are now underway to optimize DAA-based treatments. We discuss the potential role of interferon in this optimization. Clinical studies present compelling evidence that DAAs perform better in treatment-naive individuals than in individuals who previously failed treatment with interferon, a surprising correlation because interferon and DAAs are thought to act independently. Recent mathematical models explore a mechanistic hypothesis underlying this correlation. The hypothesis invokes the action of interferon at the cellular, individual, and population levels. Strong interferon responses prevent the productive infection of cells, reduce viral replication, and impede the development of resistance to DAAs in infected individuals and improve cure rates elicited by DAAs in treated populations. The models develop descriptions of these processes, integrate them into a comprehensive framework, and capture clinical data quantitatively, providing a successful test of the hypothesis. Individuals with strong endogenous interferon responses thus present a promising subpopulation for reducing DAA treatment durations. This review discusses the conceptual advances made by the models, highlights the new insights they unravel, and examines their applicability to optimize DAA-based treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.