The trinuclear copper center (TNC) of laccase reduces oxygen to water with very little overpotential. The arrangement of the coppers and ligands in the TNC is known to be from many crystal structures, yet information about possible dynamics of the ligands is absent. Here, we report dynamics at the TNC of small laccase from
Streptomyces coelicolor
using paramagnetic NMR and electron paramagnetic resonance spectroscopy. Fermi contact-shifted resonances tentatively assigned to histidine H
δ
1 display a two-state chemical exchange with exchange rates in the order of 100 s
−1
. In the electron paramagnetic resonance spectra, at least two forms are observed with different
g
z
-values. It is proposed that the exchange processes reflect the rotational motion of histidine imidazole rings that coordinate the coppers in the TNC.
Phospholipase A/acyltransferase
3 (PLAAT3) and PLAAT4 are enzymes
involved in the synthesis of bioactive lipids. Despite sequential
and structural similarities, the two enzymes differ in activity and
specificity. The relation between the activity and dynamics of the
N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a
much higher melting temperature and exhibits less nanosecond and millisecond
dynamics in the active site, in particular in loop L2(B6), as shown
by NMR spectroscopy and molecular dynamics calculations. Swapping
the L2(B6) loops between the two PLAAT enzymes results in strongly
increased phospholipase activity in PLAAT3 but no reduction in PLAAT4
activity, indicating that this loop contributes to the low activity
of PLAAT3. The results show that, despite structural similarity, protein
dynamics differ substantially between the PLAAT variants, which can
help to explain the activity and specificity differences.
Limiting the dynamics of paramagnetic tags is crucial for the accuracy of the structural information derived from paramagnetic nuclear magnetic resonance (NMR) experiments. A hydrophilic rigid 2,2′,2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA)-like lanthanoid complex was designed and synthesized following a strategy that allows the incorporation of two sets of two adjacent substituents. This resulted in a C 2 symmetric hydrophilic and rigid macrocyclic ring, featuring four chiral hydroxyl-methylene substituents. NMR spectroscopy was used to investigate the conformational dynamics of the novel macrocycle upon complexation with europium and compared to DOTA and its derivatives. The twisted square antiprismatic and square antiprismatic conformers coexist, but the former is favored, which is different from DOTA. Twodimensional 1 H exchange spectroscopy shows that ring flipping of the cyclen-ring is suppressed due to the presence of the four chiral equatorial hydroxyl-methylene substituents at proximate positions. The reorientation of the pendant arms causes conformational exchange between two conformers. The reorientation of the coordination arms is slower when the ring flipping is suppressed. This indicates that these complexes are suitable scaffolds to develop rigid probes for paramagnetic NMR of proteins. Due to their hydrophilic nature, it is anticipated that they are less likely to cause protein precipitation than their more hydrophobic counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.