The sludge from a steel processing unit bearing zinc, lead, iron, and manganese was solidified with ordinary Portland cement. The waste was stabilized in the specimens with a waste/binder ratio range of 0.16-4.0. On the basis of the available leaching and unconfined compressive strength, the performance of the solidified/stabilized waste was compared for different numbers of curing days. It was found that curing up to 28 days resulted in a performance improvement, as shown by less leaching of heavy metals and the increased unconfined compressive strength of the specimen. The treatment effectiveness of the solidification/stabilization process was assessed for the metals Pb, Zn, Fe, and Mn, and was found to be 89%, 95%, 74%, and 90%, respectively, for an optimum ratio of 4.0 after 28 days of curing.
The performance of the Photovoltaic (PV) module as a building material is analyzed by predicting the hourly variation in the room temperature compared to base case (conventional material). A computer simulation model of Fourier admittance method is used for the analysis. The average temperature fluctuation of PV roof and PV wall building compared to base case is 6.58°C and for PV wall 2.91°C respectively. The total daily energy generation from PV wall is found in the range of 6.7 kWh to 11.86 kWh, for PV roof its 17.24 kWh to 22 kWh. Due to temperature fluctuation the max additional daily cooling load obtained in PV roof case is 94.7 kWh and 41.97 kWh for PV wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.