The cyclic adenosine monophosphate–dependent protein kinase A (PKA) pathway helps regulate both cell growth and division, and triglyceride storage and metabolism in response to nutrient status. Studies in yeast show that disruption of this pathway promotes longevity in a manner similar to caloric restriction. Because PKA is highly conserved, it can be studied in mammalian systems. This report describes the metabolic phenotype of mice lacking the PKA catalytic subunit Cβ. We confirmed that Cβ has high levels of expression in the brain but also showed moderate levels in liver. Cβ-null animals had reduced basal PKA activity while appearing overtly normal when fed standard rodent chow. However, the absence of Cβ protected mice from diet-induced obesity, steatosis, dyslipoproteinemia, and insulin resistance, without any differences in caloric intake or locomotor activity. These findings have relevant pharmacological implications because aging in mammals is characterized by metabolic decline associated with obesity, altered body fat distribution, and insulin resistance.
Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1000 ppm acarbose, and 1000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.
Colorectal cancer (CRC) is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa), the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD) with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC) with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.
Resilience to aging is a biological event that precedes age-related decline in physiological function and is defined as an organism's ability to respond to physical stress with increasing age. There is a need to identify factors that may predict resilience for enhancing and maintaining healthy aging. Older people often experience delayed wound healing beause of compromised tissue repair and immune response. Therefore preclincal models may be of value to investigate the relationship between cutaneous wound healing and resilience to aging. This brief report descibes an ear punch biopsy model of cutaneous wound healing in aging mice and shows that mice with biopsy ear wounds that heal more quickly have better cognition, increased strength and better running endurance later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.