Ever increasing demand for green and sustainable chemical processes has set up a drive to replace transition metals with earth-abundant, nontoxic, and environmentally benign alternatives. In this regard, the alkaline earth metal complexes have attracted significant attention. Herein, we have used a β-diketiminato ligand with methyl-pyridine side arm to synthesize magnesium (1) and calcium (2) compounds. The constitutions of 1 and 2 have been confirmed by single crystal X-ray studies, which show that the magnesium and calcium atom in 1 and 2 possesses octahedral geometry. Subsequently, we have used them as catalysts (1 mol %) for hydroboration of a wide range of aldehydes using pinacolborane (HBpin) at room temperature. The strategy has further been extended to ketones with 2 mol % catalyst loading. DFT calculations have been performed to understand the mechanism.
The NHC•borane chemistry has been majorly restricted to imidazol-2-ylidene classes of carbenes. In our previous communication, we have reported the synthesis of 6-SIDipp•BH3 [6-SIDipp = 1,3-di(2,6-diisopropylphenyl) tetrahydropyrimidine-2-ylidene] and its electrophilic...
Organocalcium compounds have been reported as efficient catalysts for various transformations, for cases in which one of the substrates contained an E-H (E=B, N, Si, P) bond. Here, we look at the possibility of employing an organocalcium compound for a transformation in which none of the precursors has a polar E-H bond. This study demonstrates the utilization of a well-defined amidinatocalcium iodide, [PhC(NiPr) CaI] (1) for cyanosilylation of a variety of aldehydes and ketones with Me SiCN under ambient conditions without the need of any co-catalyst. The reaction mechanism involves a weak adduct formation between 1 and Me SiCN leading to the activation of the Si-C bond, which subsequently undergoes σ-bond metathesis with a C=O moiety. Such a mechanistic pathway is unprecedented in alkaline earth metal chemistry. Experimental and computational studies support the mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.