Emergence of wireless embedded applications is resulting in the communication among sensor nodes connected in a wireless personal area network. Sensor nodes gather the real time information and transmit it to the desired application. This requires transmission of IPv6 packets over Low-power wireless personal area network and is called 6LoWPAN. IPv6 is resource intensive protocol whereas 6LoWPAN is resource constraint due to small packet size, limited device memory, short transmission range, and less data rate of sensor nodes. Also these nodes in 6LoWPAN are mainly battery operated hence minimum power consumption is also a major constraint.To make the efficient transmission of information in such a resource constraint network, an adaptation layer was suggested and implemented by Internet Engineering Task Force (IETF). The placing of this additional layer is in between network layer and data link layer of TCP/IP protocol stack. This paper contributes in the detailed analysis of need of adaptation layer in 6LoWPAN protocol stack. The necessity of this additional layer is justified by explaining the major functions like header compression, fragmentation and reassembly of packets and packet routing handled by it.
The Scale with which the Internet of Things (IoT) is penetrating in our day to day life, time is not far away when it would be the Internet of Everything (IoE). That will require billions of devices to communicate with each other in the real world. To cater to the same, Wireless Sensor Network (WSN) is composed of 6LoWPAN sensor-nodes, which are mainly battery operated. One of the major issues, in such a network, is nodes’ limited lifetime which is battery dependent. In this paper, we have suggested and implemented an approach for ‘Estimation and Enhancement of Lifetime of Wireless Sensor Network’ (E&EL-WSN). The aim of our study is to suggest an approach that helps in power saving of the batteries of sensor-nodes and will result in an enhanced lifetime of 6LoWPAN environment. Our suggested approach is based on the concept of reduced packet size resulting in saving of power consumption. Packet size is reduced by our Modified and Improved Header Compression (MIHC) method of IPv6 header compression. The simulation, done in Cooja, shows, in our case, an improvement of approximately 19% saving of power consumption. This results in an enhancement of 70 days in the lifetime of the network, which is almost 23% better than existing approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.