Type 3 Diabetes (T3D) is a neuroendocrine disorder that represents the progression of Type 2 Diabetes Mellitus (T2DM) to Alzheimer’s disease (AD). T3D contributes in the increase of the total load of Alzheimer’s patients worldwide. The protein network based strategies were used for the analysis of protein interactions and hypothesis was derived describing the possible routes of communications among proteins. The hypothesis provides the insight on the probable mechanism of the disease progression for T3D. The current study also suggests that insulin degrading enzyme (IDE) could be the major player which holds the capacity to shift T2DM to T3D by altering metabolic pathways like regulation of beta-cell development, negative regulation of PI3K/AKT pathways and amyloid beta degradation.
COVID-19, emerged at the end of 2019 have dramatically threatened the health, economy, and social mobility of people around the world and till date no medication is available for its treatment. An amazing herb, Nigella sativa , having antiviral, antihypertensive, anti- diarrhoeal, analgesics, and anti-bacterial properties, needs to be explored for its efficacy against SARS-CoV-2, the causative agent of COVID-19. In-silico studies were carried out to understand the role of its bioactive constituents in COVID-19 treatment and prevention. Firstly, the disease network was prepared by using ACE2 (Angiotensin-II receptor), as it is the entry site for virus. It was used to decipher the mechanism of SARS-COV-2 infection in humans. Second, the target receptors for N. sativa were predicted and protein interaction studies were conducted. Further, docking studies were also performed to analyse it for treatment purpose as well. This study concludes that pathways undertaken by N. sativa bioactive constituents were similar to the pathways followed in SARS-COV-2 pathology, like renin-angiotensin system, kidney functions, regulation of blood circulation, blood vessel diameter , etc . Also, in docking studies, the constituents of N. sativa , α-hederin, Thymohydroquinone and Thymoquinone were observed to be efficiently binding to ACE2. Also, the bioactive phytoconstituents are involved in molecular pathways like HIF1, VEGF, IL-17, AGE-RAGE, chemokine and calcium signaling pathways which can be majorly helpful in combating hypoxia and inflammation caused due to compromised immune system and oxidative stress. Therefore, N. sativa standardized extract having the above phytoconstituents could be useful in COVID-19 and hence opens a new treatment line.
Zebrafish (ZF) is an incredible animal for the study of neurological disorders. Its behaviour is like higher vertebrate animals, which makes it gainful and robust. Understanding the psychological and biological implications of housing settings for ZFs is very crucial in improving the replicability and dependability of ZF behavioural research. Individual housing triggers depression-like symptoms that suggest that housing conditions have negative effects on ZF and can result in the data discrepancy. Based on various behavioural analyses, we have evaluated that the ZFs kept in isolation and the ZFs kept in herd conditions exhibit different behavioural patterns. Interestingly, normal isolated subjects exhibit similar behavioural patterns as Alzheimer disease (AD)-induced subjects; hence, this can have serious implications on any study concerning behaviour of ZFs. Therefore, we have reported a new behavioural test named "Alarm Test", which effectively discriminates normal isolated subjects from AD subjects. Alarm Test is observed to be better than other tests used for studying fear and anxiety in ZFs as it uses the indigenous compound released by ZFs during fear and makes use of the same for analysis. This can reduce the involvement of chemicals during behavioural analysis as well as sacrifice of ZFs for collection of alarm substance.
Hepatocellular carcinoma (HCC) is one of the major health problems with increasing incidence worldwide. We report the elevation in transthyretin (TTR) expression following HCC induction using diethylnitrosamine (DEN) and 2-aminoacetylfluorine (2-AAF) in male Wistar rats. The increase in its expression took place at very early stage and remained elevated throughout HCC progression. The analysis of TTR gene in HCC bearing rats revealed four novel mutations that alter three amino acids at positions 61, 100, and 115. While these mutations do not directly affect the binding of TTR to thyroxine (T 4 ), the mutation in amino acid 115 interferes with TTR tetramer formation that leads to its accumulation. Further, the mutated TTR is unable to cleave C-terminal of apolipoprotein A1 (APOA1) that results in abnormal lipid metabolism. This has correlation with development of liver cirrhosis and HCC. Furthermore, the mutated TTR seems to have potential as biomarker for early detection of HCC. K E Y W O R D S2-aminoacetylfluorine, apolipoprotein A1, diethylnitrosamine, expression, mutations, tetramer formation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.