Chimeric Antigen Receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two-thirds of patients fail this treatment. Resistance to apoptosis is a key feature of cancer cells that associates with treatment failure. In 87 NHL patients treated with anti-CD19 CART, we found that chromosomal alteration of BCL-2, a critical anti-apoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2-inhibitor, venetoclax, and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L) which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells per se enhanced CART anti-tumor activity in preclinical models and in patients by prolonging CART persistence.
Highlights
Subpopulations of cisplatin-resistant cells are cross-resistant to anti-microtubule drugs.
Resistance mechanisms in cisplatin-resistant ovarian cancer cells are diverse.
Increased TNF and NFκB signaling found in cisplatin-resistant subpopulations treated with anti-microtubule drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.