The exponential growth in data traffic due to the modernization of smart devices has resulted in the need for a high-capacity wireless network in the future. To successfully deploy 5G network, it must be capable of handling the growth in the data traffic. The increasing amount of traffic volume puts excessive stress on the important factors of the resource allocation methods such as scalability and throughput. In this paper, we define a network planning as an optimization problem with the decision variables such as transmission power and transmitter (BS) location in 5G networks. The decision variables lent themselves to interesting implementation using several heuristic approaches, such as differential evolution (DE) algorithm and Real-coded Genetic Algorithm (RGA). The key contribution of this paper is that we modified RGA-based method to find the optimal configuration of BSs not only by just offering an optimal coverage of underutilized BSs but also by optimizing the amounts of power consumption. A comparison is also carried out to evaluate the performance of the conventional approach of DE and standard RGA with our modified RGA approach. The experimental results showed that our modified RGA can find the optimal configuration of 5G/LTE network planning problems, which is better performed than DE and standard RGA.
Hindawi Publishing Corporation
The modernization of smart devices has emerged in exponential growth in data traffic for a high-capacity wireless network. 5G networks must be capable of handling the excessive stress associated with resource allocation methods for its successful deployment. We also need to take care of the problem of causing energy consumption during the dense deployment process. The dense deployment results in severe power consumption because of fulfilling the demands of the increasing traffic load accommodated by base stations. This paper proposes an improved Artificial Bee Colony (ABC) algorithm which uses the set of variables such as the transmission power and location of each base station (BS) to improve the accuracy of localization of a user equipment (UE) for the efficient energy consumption at BSes. To estimate the optimal configuration of BSes and reduce the power requirement of connected UEs, we enhanced the ABC algorithm, which is named a Modified ABC (MABC) algorithm, and compared it with the latest work on Real-Coded Genetic Algorithm (RCGA) and Differential Evolution (DE) algorithm. The proposed algorithm not only determines the optimal coverage of underutilized BSes but also optimizes the power utilization considering the green networks. The performance comparisons of the modified algorithms were conducted to show that the proposed approach has better effectiveness than the legacy algorithms, ABC, RCGA, and DE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.