BackgroundChemoprevention, which includes the use of synthetic or natural agents (alone or in combination) to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa.MethodsThe aqueous cinnamon extract (ACE-c) was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-c was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-c were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2) expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-c treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψm) in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS.ResultsCinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-c exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-c. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential.ConclusionCinnamon could be used as a potent chemopreventive drug in cervical cancer.
La0.7Sr0.3MnO3
(LSMO) is a mixed-valent room temperature ferromagnet with properties that are attractive
for their applicability in biomedicine. We report, for the first time, immobilization of
commonly used biocompatible molecules on LSMO nanoparticles, namely bovine serum
albumin and dextran. The former was conjugated to LSMO using 1-ethyl-3-(3-dimethyl
aminopropyl)-carbodiimide (CDI) as a coupling agent while the latter was used without
any coupler. These bioconjugated nanoparticles exhibit several properties that suggest their
applicability in the field of biomedicine, namely (a) no changes in the Curie temperature at
∼360 K after conjugation with biomolecules, (b) rapid attainment of the desired temperature
(48 °C) at low concentration (e.g. fluidized dextran-coated system at
80 µg ml−1) upon exposure to 20 MHz radio-frequency, (c) extremely low cytotoxicity in skin
carcinoma, human fibrosarcoma and neuroblastoma cell lines and (d) high stability of the
LSMO system with negligible leaching of ionic manganese into the delivery medium,
indicating their safety in possible human applications.
Co-sonication of curcumin and acidic sophorolipid in aqueous solution is shown to lead to a dramatic enhancement of curcumin bioavailability through size reduction and encapsulation. The interaction between the two is studied and discussed based on optical absorption, photoluminescence, dynamic light scattering (DLS), zeta potential, FE-SEM, TEM, Infrared spectroscopy and X-ray diffraction measurements. The cytotoxicity effects of curcumin on breast cancer cell lines, MCF-7 and MDA-MB-231, are shown to be significantly enhanced by the formation of its complex with sophorolipid. The relative cytotoxicity of curcumin with its SL(A) complex is more due to the presence of the glucose moiety. The results further suggest that sophorolipid based formulations, which solubilize and nanoencapsulate curcumin after lipid digestion, show great potential for curcumin cell entry.
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.