Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual’s life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for feature engineering associated with traditional machine learning. We performed a systematic review of DL models for SZ detection. Various deep models like long short-term memory, convolution neural networks, AlexNet, etc., and composite methods have been published based on electroencephalographic signals, and structural and/or functional magnetic resonance imaging acquired from SZ patients and healthy patients control subjects in diverse public and private datasets. The studies, the study datasets, model methodologies, and quantitative and statistical comparison of results obtained by the studies are reported in detail. . In addition, the challenges of DL models for SZ diagnosis and future works are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.