Abstract. Multi-Agent Systems (MAS) offer an architecture for distributed problem solving. Distributed Data Mining (DDM) algorithms focus on one class of such distributed problem solving tasks-analysis and modeling of distributed data. This paper offers a perspective on DDM algorithms in the context of multiagents systems. It discusses broadly the connection between DDM and MAS. It provides a high-level survey of DDM, then focuses on distributed clustering algorithms and some potential applications in multi-agent-based problem solving scenarios. It reviews algorithms for distributed clustering, including privacypreserving ones. It describes challenges for clustering in sensor-network environments, potential shortcomings of the current algorithms, and future work accordingly. It also discusses confidentiality (privacy preservation) and presents a new algorithm for privacy-preserving density-based clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.