Abstract:In this paper, we proposed an efficient authentication and access control method based on general view of the security issues for perception layer of Internet of Things (IoT). The advantage of the proposed method is establishing session key based on Elliptic Curve Cryptography (ECC). This enhances mutual authentication between the user and sensor nodes, and intermediate processes. On the other hand, this method solves the resource-constrained problem in perception layer of the Internet of Things.
The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K-Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.