Drag reduction strategies for the turbulent flow around a D-shaped body are examined experimentally and theoretically. A reduced-order vortex model describes the interaction between the shear layer and wake dynamics and guides a path to an efficient feedback control design. The derived feedback controller desynchronizes shear-layer and wake dynamics, thus postponing vortex formation. This actuation is tested in a wind tunnel. The Reynolds number based on the height of the body ranges from 23000 to 70000. We achieve a 40% increase in base pressure associated with a 15% drag reduction employing zero-net-mass-flux actuation. Our controller outperforms other approaches based on open-loop forcing and extremum-seeking feedback strategies in terms of drag reduction, adaptivity, and the required actuation energy.
A low-dimensional Galerkin model is proposed for the flow around a high-lift configuration, describing natural vortex shedding, the high-frequency actuated flow with increased lift and transients between both states. The form of the dynamical system has been derived from a generalized mean-field consideration. Steady state and transient URANS (unsteady Reynolds-averaged Navier–Stokes) simulation data are employed to derive the expansion modes and to calibrate the system parameters. The model identifies the mean field as the mediator between the high-frequency actuation and the low-frequency natural shedding instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.