SPIO or USPIO labeling without TAs has an influence on gene expression of MSCs upregulating transferrin receptor. Furthermore, SPIO labeling with a TA will coat the cellular surface.
Although T cells can be labeled for noninvasive in vivo imaging, little is known about the impact of such labeling on T-cell function, and most imaging methods do not provide holistic information about trafficking kinetics, homing sites, or quantification. Methods: We developed protocols that minimize the inhibitory effects of 64 Cupyruvaldehyde-bis(N4-methylthiosemicarbazone) ( 64 Cu-PTSM) labeling on T-cell function and permit the homing patterns of T cells to be followed by PET. Thus, we labeled ovalbumin (OVA) T-cell receptor transgenic interferon (IFN)-g-producing CD4 1 T (Th1) cells with 0.7-2.2 MBq of 64 Cu-PTSM and analyzed cell viability, IFN-g production, proliferation, apoptosis, and DNA double-strand breaks and identified intracellular 64 Cu accumulation sites by energy dispersive x-ray analysis. To elucidate the fate of Th1 cell homing by PET, 10 7 64 Cu-OVA-Th1 cells were injected intraperitoneally or intravenously into healthy mice. To test the functional capacities of 64 Cu-OVA-Th1 cells during experimental OVA-induced airway hyperreactivity, we injected 10 7 64 Cu-OVA-Th1 cells intraperitoneally into OVA-immunized or nonimmunized healthy mice, which were challenged with OVA peptide or phosphate-buffered saline or remained untreated. In vivo PET investigations were followed by biodistribution, autoradiography, and fluorescence-activated cell sorting analysis. Results: PET revealed unexpected homing patterns depending on the mode of T-cell administration. Within 20 min after intraperitoneal administration, 64 Cu-OVA-Th1 cells homed to the perithymic lymph nodes (LNs) of naive mice. Interestingly, intravenously administered 64 Cu-OVA-Th1 cells homed predominantly into the lung and spleen but not into the perithymic LNs. The accumulation of 64 Cu-OVA-Th1 cells in the pulmonary LNs (6.8 6 1.1 percentage injected dose per cubic centimeter [%ID/cm 3 ]) 24 h after injection was highest in the OVA-immunized and OVA-challenged OVA airway hyperreactivity-diseased littermates 24 h after intraperitoneal administration and lowest in the untreated littermates (3.7 6 0.4 %ID/cm 3 ). As expected, 64 Cu-OVA-Th1 cells also accumulated significantly in the pulmonary LNs of nonimmunized OVA-challenged animals (6.1 6 0.5 %ID/cm 3 ) when compared with phosphate-buffered saline-challenged animals (4.6 6 0.5 %ID/cm 3 ). Conclusion: Our protocol permits the detection of Th1 cells in single LNs and enables temporal in vivo monitoring of T-cell homing over 48 h. This work enables future applications for 64 Cu-PTSM-labeled T cells in clinical trials and novel therapy concepts focusing on T-cell-based immunotherapies of autoimmune diseases or cancer.
BackgroundFor clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed.ResultsHuman MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under osteogenic differentiation as detected by qRT-PCR. Moreover, microarray analyses revealed that exposition of labeled MSCs to magnetic fields led to an up regulation of CD93 mRNA and cadherin 7 mRNA and to a down regulation of Zinc finger FYVE domain mRNA. Exposition of unlabeled MSCs to magnetic fields led to an up regulation of CD93 mRNA, lipocalin 6 mRNA, sialic acid acetylesterase mRNA, and olfactory receptor mRNA and to a down regulation of ubiquilin 1 mRNA. No influence of the exposition to magnetic fields could be observed on the migration capacity, the viability, the proliferation rate and the chondrogenic differentiation capacity of labeled or unlabeled MSCs.ConclusionsIn our study an innovative labeling protocol for tracking MSCs by MRI using SPIO in combination with magnetic fields was established. Both, SPIO and the static magnetic field were identified as independent factors which affect the functional biology of human MSCs. Further in vivo investigations are needed to elucidate the molecular mechanisms of the interaction of magnetic fields with stem ...
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS).Mesenchymal stem cells (MSC) have been shown to ameliorate symptoms in experimental autoimmune encephalomyelitis (EAE), a model of MS. Using cloned MSC labeled with clinically approved small particles of iron oxide (SPIO) for treatment of EAE we analyzed the tissue localization of transferred cells. Treatment with unlabeled MSC led to disease amelioration compared to controls. In contrast, treatment with SPIOlabeled MSC lead to increase in disease severity. Treatment with SPIO alone did not alter disease course. After transplantation labeled and nonlabeled MSC were detected in the CNS and the liver with significantly more SPIO-labeled cells present in the CNS. Iron deposition was present in the group treated with SPIOlabeled MSC, indicating that in vivo the initially cell surface-bound iron detached from the MSC. These results could be of great importance for imaging of patients in the clinical setting, indicating that in vivo application of SPIO-labeled MSC needs to be performed with caution because the cell-derived exposure of iron can lead to disease aggravation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.