A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.
Abstract. Carbonyl sulfide (OCS) is a chemically quite stable gas in the troposphere (lifetime ~2-6 years) and consequently some of it is transported up to the stratosphere where it contributes to the stratospheric sulfate layer. Due to the similarities in uptake mechanism between OCS and CO2, the use of OCS as a proxy for CO2 in ecosystem gross primary production (GPP) has been proposed. For this application a good understanding of uptake (UOCS) and production (POCS) processes of OCS in an 15 ecosystem is required. A new OCS quantum cascade laser coupled with an automated soil chamber system enabled us to measure the soil-atmosphere OCS exchange of four different soil samples with high precision. The adjustment of the chamber air to different OCS mixing ratios (50, 500, and 1000 ppt) allowed us to separate production and consumption processes and to estimate compensation points (CPs) for the OCS exchange. At an atmospheric mixing ratio of 1000 ppt, the maximum UOCS was of the order of 22 to 110 pmol g -1 h -1 for needle forest soil samples and of the order of 3 to 5 pmol g -1 h -1 20 for an agricultural mineral soil, both measured at moderate soil moisture. Uptake processes (UOCS) were dominant at all soil moistures for the forest soils, while POCS exceeded UOCS at higher soil moistures for the agricultural soil, resulting in net emission. Hence, our results indicate that in (spruce) forests UOCS might be the dominant process, while in agricultural soils POCS at higher soil moisture and UOCS under moderate soil moisture seem to dominate the OCS exchange. The OCS compensation points (CPs) were highly dependent on soil water content and extended over a wide range of 130 ppt to 1600 25 ppt for the forest soils and 450 ppt to 5500 ppt for the agricultural soil. The strong dependency between soil water content and the compensation point value must be taken into account for all further analyses. The lowest CPs were found at about 20% water filled pore space (WFPSlab), implying the maximum of UOCS under these soil moisture conditions and excluding OCS emission under such conditions. We discuss our results in view of other studies about compensation points and the potential contribution of microbial groups. 30
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.