CeO 2 is a promising catalyst for the HCl oxidation (Deacon process) in order to recover Cl 2 . Employing shape-controlled CeO 2 nanoparticles (cubes, octahedrons, rods) with facets of preferential orientations ((100), ( 111), ( 110)), we studied the activity and stability under two reaction conditions (harsh: Ar:HCl:O 2 = 6:2:2 and mild: Ar:HCl:O 2 = 7:1:2). It turns out that both activity and stability are structuresensitive. In terms of space time yield (STY), the rods are the most active particles, followed by the cubes and finally the octahedrons. This very same trend is reconciled with the complete oxygen storage capacity (OSCc), indicating a correlation between the observed activity STY and the OSCc. The apparent activation energies are about 50 kJ/mol for cubes and rods, while the octahedrons reveal an apparent activation energy of 65 kJ/mol. The reaction order in O 2 is positive (0.26−0.32). Under mild reaction conditions, all three morphologies are stable, consistent with corresponding studies of CeO 2 powders and CeO 2 nanofibers. Under harsh reaction conditions, however, cubes and octahedrons are both instable, forming hydrated CeCl 3 , while rods are still stable. The present stability and activity experiments in the catalytic HCl oxidation reaction over shape-controlled CeO 2 nanoparticles may serve as benchmarks for future ab initio studies of the catalyzed HCl oxidation reaction over well-defined CeO 2 surfaces.
In disordered mesopore networks, the size distribution and connection between adjacent pores control desorption. How network characteristics can be extracted from corresponding physisorption isotherms is still a matter of research. To elucidate this, we study krypton physisorption (117.8 K) in the mesopore networks of "Nakanishi"-type monolithic silica. Combining physisorption in scanning acquisition mode with synchrotron-based in-situ SAXS provides complementary information on pore-filling states. These data reveal a mean pore size gradient in which pores grow smaller towards the material's network center. This structural motif cannot be derived through conventional isotherm analysis, but it is clearly exposed through scanning desorption curves which do not quite converge but merge individually with the main desorption isotherm before the lower hysteresis closing point. Hence, our findings provide the basis to build advanced models for analyzing scanning isotherms and extracting network characteristics through new descriptors, such as pore size and connectivity distributions as a function of the distance from the network center.
The preparation of monolithic SiO with bimodal porosity using a special sol-gel procedure ("Nakanishi process") generally shows a pronounced sensitivity towards several physico-chemical parameters of the initial solution (concentrations, precursors, pH, temperature, etc.). Thus, temporal and spatial variations of these parameters during the sol-gel reactions can affect the final meso- and macropore space with respect to the pore size distributions and homogeneity. In this study we thoroughly examine the sol-gel reaction in terms of the impact of temperature accuracy and homogeneity during the gelation and their effect on meso- and macropore space. The in-depth characterization of the macroporosity in monolithic SiO rods, prepared by utilizing a highly homogeneous and accurate temperature profile, shows that a decrease of only 1.5 °C during the reaction doubles the mean size of the macropores in the analyzed temperature ranges (22.0-28.0 °C and 33.5-36.5 °C). Rheological measurements of the gelation points and the viscosity of the starting solutions prove that a higher reaction rate is the main reason for this marked temperature-sensitivity. Furthermore, the mesoporosity is affected to a surprising extent by the applied small temperature differences during the gelation reaction. This phenomenon is shown to be mainly caused by the temperature-dependent differences in macropore and skeleton dimensions and an inhomogeneous distribution of mesopore sizes within the skeleton. In essence, our study reveals that the impact of temperature on the formation of meso- and macroscale dimensions during the sol-gel process has been underestimated so far. The impact of a poor temperature homogeneity during monolith synthesis is exemplarily demonstrated by the application of monolithic silica capillary columns in HPLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.