Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. Sialylation is crucial for a variety of cellular functions, such as cell adhesion or signal recognition, and regulates the biological stability of glycoproteins. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase͞N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. We report that inactivation of the UDP-GlcNAc 2-epimerase by gene targeting causes early embryonic lethality in mice, thereby emphasizing the fundamental role of this bifunctional enzyme and sialylation during development. The need of UDP-GlcNAc 2-epimerase for a defined sialylation process is exemplified with the polysialylation of the neural cell adhesion molecule in embryonic stem cells.
N-Acetylneuraminic acid is the most prominent sialic acid in eukaryotes. The structural diversity of sialic acid is exploited by viruses, bacteria, and toxins and by the sialoglycoproteins and sialoglycolipids involved in cell-cell recognition in their highly specific recognition and binding to cellular receptors. The physiological precursor of all sialic acids is N-acetyl D-mannosamine (ManNAc). By recent findings it could be shown that synthetic N-acyl-modified D-mannosamines can be taken up by cells and efficiently metabolized to the respective N-acyl-modified neuraminic acids in vitro and in vivo. Successfully employed D-mannosamines with modified N-acyl side chains include N-propanoyl- (ManNProp), N-butanoyl- (ManNBut)-, N-pentanoyl- (ManNPent), N-hexanoyl- (ManNHex), N-crotonoyl- (ManNCrot), N-levulinoyl- (ManNLev), N-glycolyl- (ManNGc), and N-azidoacetyl D-mannosamine (ManNAc-azido). All of these compounds are metabolized by the promiscuous sialic acid biosynthetic pathway and are incorporated into cell surface sialoglycoconjugates replacing in a cell type-specific manner 10-85% of normal sialic acids. Application of these compounds to different biological systems has revealed important and unexpected functions of the N-acyl side chain of sialic acids, including its crucial role for the interaction of different viruses with their sialylated host cell receptors. Also, treatment with ManNProp, which contains only one additional methylene group compared to the physiological precursor ManNAc, induced proliferation of astrocytes, microglia, and peripheral T-lymphocytes. Unique, chemically reactive ketone and azido groups can be introduced biosynthetically into cell surface sialoglycans using N-acyl-modified sialic acid precursors, a process offering a variety of applications including the generation of artificial cellular receptors for viral gene delivery. This group of novel sialic acid precursors enabled studies on sialic acid modifications on the surface of living cells and has improved our understanding of carbohydrate receptors in their native environment. The biochemical engineering of the side chain of sialic acid offers new tools to study its biological relevance and to exploit it as a tag for therapeutic and diagnostic applications.
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Sialylation of glycoproteins and glycolipids plays an important role during development, regeneration, and pathogenesis of diseases. During times of intense plasticity within the nervous system, such as development and regeneration, sialylation of neural cells is distinct from the time of its maintenance. In this study, a synthetic precursor of neuraminic acid, N-propanoylmannosamine (N-propanoyl neuraminic acid precursor (P-NAP)), is applied to the culture medium of oligodendrocyte progenitor cells, microglia, astrocytes, and neurons from neonatal rat brains to alter sialylation of glycoconjugates within these cells. P-NAP is metabolized and incorporated as N-propanoyl neuraminic acid into glycoproteins of the cell membrane. P-NAP stimulates the proliferation of astrocytes and microglia but not of oligodendrocyte progenitor in vitro. However, P-NAP increases the number of oligodendrocyte progenitor cells expressing the early oligodendroglial surface marker A2B5 epitope. In the presence of P-NAP, cerebellar neurons (but not astrocytes) in microexplant cultures start to express the oligodendroglial progenitor marker A2B5 epitope, which is normally undetectable on these cells. The controls, which were performed in the absence of any additive or in the presence of the physiological precursor of neuraminic acid, N-acetylmannosamine, did not show any increase in A2B5 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.