The complete crystallography of a one-dimensional crystal of potassium iodide encapsulated within a 1.6-nanometer-diameter single-walled carbon nanotube has been determined with high-resolution transmission electron microscopy. Individual atoms of potassium and iodine within the crystal were identified from a phase image that was reconstructed with a modified focal series restoration approach. The lattice spacings within the crystal are substantially different from those in bulk potassium iodide. This is attributed to the reduced coordination of the surface atoms of the crystal and the close proximity of the van der Waals surface of the confining nanotube.
Single-walled carbon nanotubes (SWNTs) can be used as templates for the growth of low-dimensional inorganic materials whose structures and properties often differ greatly from those of the bulk. Here we describe the detailed crystallography of an entire helical one-dimensional cobalt diiodide nanostructure encapsulated within a SWNT. This material has an unprecedented twisted double tetrahedral chain structure arising from a rotation of Co(2)I(4) units along its length. The complete nanostructure comprises two distinct regions with oppositely handed helices separated by a short disordered region. The encapsulating SWNT shows a commensurate ovoid distortion reflecting an unexpectedly strong interaction between the nanostructure and the SWNT.
Using high resolution electron microscopy and first principles quantum mechanical calculations we have explored the fundamental physics and chemistry of the semiconductor, HgTe grown inside single wall carbon nanotubes. This material forms a low-dimensional structure based on a repeating Hg2Te2 motif in which both atom species adopt new coordination geometries not seen in the bulk. Density-functional theory calculations confirm the stability of this structure and demonstrate conclusively that it arises solely as a consequence of constrained low dimensionality. This change is directly correlated with a modified electronic structure in which the low-dimensional form of HgTe is transformed from a bulk semimetal to a semiconductor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.