A novel protein complex has been identified in human cells that has a molecular mass of approximately 450 kDa. It consists of at least eight different subunits including JAB1, the Jun activation-domain binding protein 1, and Trip15, the thyroid hormone receptor-interacting protein 15. The purified complex contains COP9 and COP11 protein homologs and is very similar, if not identical, to the plant COP9 complex involved in light-mediated signal transduction. The isolated JAB1-containing particle has kinase activity that phosphorylates IkappaBalpha, the carboxy terminus of p105, and Ser63 and/or Ser73 of the amino-terminal activation domain of c-Jun. The phosphorylation of c-Jun requires the carboxy terminus of the protein containing the DNA binding and dimerization domains. Three subunits of the new complex--Sgn3, Sgn5/JAB1, and Sgn6--exhibit sequence similarities to regulatory components of the 26S proteasome, which could indicate the existence of common substrate binding sites. Immunofluorescence staining reveals that the new complex shows a subcellular distribution similar to that of the 26S proteasome. The functional relationship of the two particles in regulating transcriptional activity is discussed. Considering the putative role of the complex in signal transduction and its widespread occurrence, we suggest the name JAB1-containing signalosome.
The production of antibodies (Abs) in chickens and the extraction of specific Abs from egg yolk (IgY Abs) are increasingly attracting the interest of the scientific community, as demonstrated by the significant growth of the IgY literature. This review offers detailed and comprehensive information about IgY-technology, including: a) possibilities for hen keeping in accordance with the Three Rs principles; b) new insights into the IgY transfer mechanism from blood to yolk as a biological basis for the technology; c) the comparative characteristics of IgY Abs and IgG Abs; d) the high efficacy of the technique, in view of the extraordinary amount of IgY Ab produced by one hen in one year (between 20g and 40g IgY in total); e) comparisons between the efficacies of IgY Abs and IgG Abs (rabbit, sheep, mouse) in several immunological assays; f) immunisation protocols, as well as the most commonly used IgY-extraction procedures; g) new possibilities for application in human and veterinary medicine, including strategies for the treatment of Helicobacter pylori infection or fatal intestinal diseases in children, particularly in poor countries, for reducing the use of antibiotics, and, in Asia and South America, for producing Abs against snake, spider and scorpion venoms; and h) the use of IgY Abs in various fields of research, also taking into consideration recent developments in South America (particularly Argentina and Cuba) and in Asia.
The COP9 signalosome (CSN) puri®ed from human erythrocytes possesses kinase activity that phosphorylates proteins such as c-Jun and p53 with consequence for their ubiquitin (Ub)-dependent degradation. Here we show that protein kinase CK2 (CK2) and protein kinase D (PKD) co-purify with CSN. Immunoprecipitation and far-western blots reveal that CK2 and PKD are in fact associated with CSN. As indicated by electron microscopy with gold-labeled ATP, at least 10% of CSN particles are associated with kinases. Kinase activity, most likely due to CK2 and PKD, co-immunoprecipitates with CSN from HeLa cells. CK2 binds to DCSN3(111±403) and CSN7, whereas PKD interacts with full-length CSN3. CK2 phosphorylates CSN2 and CSN7, and PKD modi®es CSN7. Both CK2 and PKD phosphorylate c-Jun as well as p53. CK2 phosphorylates Thr155, which targets p53 to degradation by the Ub system. Curcumin, emodin, DRB and resveratrol block CSN-associated kinases and induce degradation of c-Jun in HeLa cells. Curcumin treatment results in elevated amounts of c-Jun±Ub conjugates. We conclude that CK2 and PKD are recruited by CSN in order to regulate Ub conjugate formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.