Alzheimer's disease (AD) manifests with memory loss and spatial disorientation. AD pathology starts in the entorhinal cortex, making it likely that local neural correlates of spatial navigation, particularly grid cells, are impaired. Grid-cell-like representations in humans can be measured using functional magnetic resonance imaging. We found that young adults at genetic risk for AD (APOE-ε4 carriers) exhibit reduced grid-cell-like representations and altered navigational behavior in a virtual arena. Both changes were associated with impaired spatial memory performance. Reduced grid-cell-like representations were also related to increased hippocampal activity, potentially reflecting compensatory mechanisms that prevent overt spatial memory impairment in APOE-ε4 carriers. Our results provide evidence of behaviorally relevant entorhinal dysfunction in humans at genetic risk for AD, decades before potential disease onset.
The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1-and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.
Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.
Purpose: The aim of this work is to develop a fast and robust CEST sequence in order to allow the acquisition of a whole-brain imaging volume after a single preparation block (snapshot acquisition). Methods: A 3D-CEST sequence with an optimized 3D-EPI readout module was developed, which acquires the complete k-space data following a single CEST preparation for 1 saturation offset. Whole-brain mapping of the Z-spectrum with 2 mm isotropic resolution is achieved at 68 saturation frequencies in 5 minutes (4.33 s per offset). We analyzed the B 1 distribution in order to optimize B 1 correction and to provide accurate CEST quantification across the whole brain. Results: We obtained maps for 3 different CEST contrasts from 4 healthy subjects.Based on our B 1 distribution analysis, we conclude that 3 B 1 sampling points allow for sufficient compensation of B 1 variations across most of the brain. Two brain regions, the cerebellum and the temporal lobes, are difficult to quantify at 7 T due to very low B 1 that was achieved in these regions. Conclusions:The proposed sequence enables robust acquisition of 2 mm isotropic whole-brain CEST maps at 7 Tesla within a total scan time of 16 minutes. K E Y W O R D SAPT, B 1 -correction, CEST, chemical exchange saturation transfer, 3D-EPI, rNOE, UHF, whole brain F I G U R E 1 Schematic sequence diagram of the 3D-CEST sequence. CEST saturation (shaded area, t sat = 3.6 s) is followed by a centricreordered 3D-EPI readout with binominal water excitation (t readout = 734 ms). The GRAPPA autocalibration scan and the external 3-readout phase correction scan (ePC) are acquired at the beginning of the measurement before the irradiation offset loop (δω)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.