Aggregation of polar merocyanine dyes has been identified as an important problem in the fabrication of organic materials for photonic applications. In this work, a series of merocyanine dyes is synthesized, and their aggregation is investigated by a combination of several experimental techniques to reveal structure-property relationships. These studies provide clear evidence for the formation of centrosymmetric dimers for all investigated merocyanines in concentrated solution and in the solid state. The thermodynamics of dimerization in liquid solution is studied by concentration-dependent permittivity measurements, UV-vis spectroscopy, and electrooptical absorption experiments. A centrosymmetric dimer structure with antiparallel ordering of the dipole moments is observed in solution by 2D NMR spectroscopy as well as in the solid state by X-ray crystallography and interpreted in terms of dipolar and pi-pi interactions. The optical properties of the dimer aggregates are satisfactorily explained by an excitonic coupling model. The effect of an external electric field on the dimerization equilibrium is considered and quantitatively determined by electrooptical absorption measurements. Implications of the observed findings on the design of nonlinear optical and photorefractive materials are discussed.
Donor-acceptor polyenes of various lengths, and that combine aromatic electron-donating moieties with powerful heterocyclic electron-withdrawing terminal groups, have been synthesized and characterized as efficient nonlinear optical (NLO) chromophores. Their linear and nonlinear optical properties have been investigated, and variations in these properties have been related to ground-state polarization (dipole p ) and structure. In particular, unprecedented quadratic hyperpolarizabilities (p) have been achieved (up to p(0) =I500 x 10-30esu) by reduction of the bondlength alternation (BLA) in the polyenic chain. In each series of homologous com-
A ground-state dimer (denoted D(I)) exhibiting a strong absorption maximum at 477 nm (epsilon = 97 000 M(-1)cm(-1)) can form between adjacent BODIPY groups attached to mutant forms of the protein, plasminogen activator inhibitor type 1 (PAI-1). No fluorescence from excited D(I) was detected. A locally high concentration of BODIPY groups was also achieved by doping lipid phases (micelles, vesicles) with BODIPY-labeled lipids. In addition to an absorption band located at about 480 nm, a new weak absorption band is also observed at ca. 570 nm. Both bands are ascribed to the formation of BODIPY dimers of different conformation (D(I) and D(II)). Contrary to D(I) in PAI-1, the D(II) aggregates absorbing at 570 nm are emitting light observed as a broad band centered at about 630 nm. The integrated absorption band of D(I) is about twice that of the monomer, which is compatible with exciton coupling within a dimer. The Förster radius of electronic energy transfer between a BODIPY excited monomer and the ground-state dimer (D(I)()) is 57 +/- 2 A. A simple model of exciton coupling suggests that in D(I) two BODIPY groups are stacked on top of each other in a sandwich-like configuration with parallel electronic transition dipoles. For D(II) the model suggests that the S(0) --> S(1) transition dipoles are colinear. An explanation for the previously reported (J. Am. Chem. Soc. 1994, 116, 7801) exceptional light spectroscopic properties of BODIPY is also presented. These are ascribed to the extraordinary electric properties of the BODIPY chromophore. First, changes of the permanent electric dipole moment (Delta(mu) approximately -0.05 D) and polarizability (-26 x 10(-40) C m(2) V(-1)) between the ground and the first excited states are small. Second, the S(0) <--> S(1) electronic transition dipole moments are perpendicular to Delta(mu).
Unexpected lighting up: A slight rotational twist and rigidification of merocyanine dyes in a face‐to‐face π‐π‐stacked dimer aggregate resulted in an unexpected increase in the fluorescence intensity and lifetime (see graph). This result contrasts the common perception that the fluorescence of H‐aggregates is strongly quenched, but can be rationalized within the concept of exciton theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.