Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules.Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the 5p 6 − 5p 5 6s transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 155 nm and 180 nm wavelength are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.