We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.
Multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) is a rare disease caused by mutations in the X chromosomal <i>PIGA</i> gene. Clinically it is characterized by early-onset epilepsy, hypotonia, dysmorphic features, and variable congenital anomalies. <i>PIGA</i> codes for the phosphatidylinositol glycan-class A protein, which forms a subunit of an enzymatic complex involved in glycophosphatidylinositol (GPI) biosynthesis. We present a new case of MCAHS2 and perform a comprehensive review of the available literature to delineate the phenotypical traits associated with germline <i>PIGA</i> mutations. Furthermore, we provide functional evidence of pathogenicity of the novel missense mutation, c.154C>T; (p.His52Tyr), in the <i>PIGA</i> gene causative of MCAHS2 in our patient. By flow cytometry, we observed reduced expression of GPI-anchored surface proteins in patient granulocytes compared to control samples, proving GPI-biogenesis impairment. The patient's severe epilepsy with several daily attacks was refractory to treatment, but the frequency of seizures reduced temporarily under triple therapy with perampanel, rufinamide and vigabatrin. Our study delineates the known MCAHS2 phenotype and discusses challenges of diagnosis and clinical management in this complex, rare disease. Furthermore, we present a novel mutation with functional evidence of pathogenicity.
An increasing number of patients with 3p proximal deletions were reported in the previous decade, but the region responsible for the main features such as intellectual disability (ID) and developmental delay is not yet characterized. Here we report on two monozygotic twin brothers of 2 10/12 years and an 18-year-old man, all three of them displaying severe ID, psychomotoric delay, autistic features, and only mild facial dysmorphisms. Array CGH (aCGH), revealed a 6.55 Mb de novo interstitial deletion of 3p14.1p14.3 in the twin brothers and a 4.76 Mb interstitial deletion of 3p14.1p14.2 in the 18-year-old patient, respectively. We compared the malformation spectrum with previous molecularly well-defined patients in the literature and in the DECIPHER database (Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources; http://decipher.sanger.ac.uk/). In conclusion, the deletion of a region containing 3p14.2 seems to be associated with a relative concise phenotype including ID and developmental delay. Thus, we hypothesize that 3p14.2 is the potential core region in 3p proximal deletions. The knowledge of this potential core region could be helpful in the genetic counselling of patients with 3p proximal deletions, especially concerning their phenotype.
Variants in transcription factor p63 have been linked to several autosomal dominantly inherited malformation syndromes. These disorders show overlapping phenotypic characteristics with various combinations of the following features: ectodermal dysplasia, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypoplastic breasts and/or nipples, ankyloblepharon filiforme adnatum, hypospadias and cleft lip/palate. We describe a family with six individuals presenting with a striking novel phenotype characterized by a furrowed or cleft tongue, a narrow face, reddish hair, freckles and various foot deformities. Whole-exome sequencing (WES) identified a novel heterozygous variant, c.3G>T, in TP63 affecting the translation initiation codon (p.1Met?). Sanger sequencing confirmed dominant inheritance of this unique variant in all six affected family members. In summary, our findings indicate that heterozygous variants in TP63 affecting the first translation initiation codon result in a novel phenotype dominated by a cleft tongue, expanding the complex genotypic and phenotypic spectrum of TP63-associated disorders.
BackgroundDown syndrome, typically caused by trisomy 21, may also be associated by duplications of the Down syndrome critical region (DSCR) on chromosome 21q22. However, patients with small duplications of DSCR without accompanying deletions have rarely been reported.Case presentationHere we report a 5½-year-old boy with clinical features of Down syndrome including distinct craniofacial dysmorphism and sandal gaps as well as developmental delay. Conventional karyotype was normal, whereas interphase FISH analysis revealed three signals for DSCR in approximately 40% of lymphocytes and 80% of buccal mucosa cells. Array-CGH analysis confirmed a 2.56 Mb duplication of chromosome 21q22.13q22.2 encompassing DYRK1A.ConclusionThis presents one of the smallest duplications within DSCR leading to a Down syndrome phenotype. Since the dosage sensitive gene DYRK1A is the only duplicated candidate DSCR gene in our patient, this finding supports the hypothesis that DYRK1A contributes to dysmorphic and intellectual features of Down syndrome even in a mosaic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.