We investigate the behaviour of P(R ≧ r) and P(R ≦ −r) as r → ∞for the random variable where is an independent, identically distributed sequence with P(− 1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.
Given a sample from a compound Poisson distribution, we consider estimation of the corresponding rate parameter and base distribution. This has applications in insurance mathematics and queueing theory. We propose a plug-in type estimator that is based on a suitable inversion of the compounding operation. Asymptotic results for this estimator are obtained via a local analysis of the decompounding functional.
Abstract. Rémy's algorithm is a Markov chain that iteratively generates a sequence of random trees in such a way that the n th tree is uniformly distributed over the set of rooted, planar, binary trees with 2n + 1 vertices. We obtain a concrete characterization of the Doob-Martin boundary of this transient Markov chain and thereby delineate all the ways in which, loosely speaking, this process can be conditioned to "go to infinity" at large times. A (deterministic) sequence of finite rooted, planar, binary trees converges to a point in the boundary if for each m the random rooted, planar, binary tree spanned by m + 1 leaves chosen uniformly at random from the n th tree in the sequence converges in distribution as n tends to infinity -a notion of convergence that is analogous to one that appears in the recently developed theory of graph limits.We show that a point in the Doob-Martin boundary may be identified with the following ensemble of objects: a complete separable R-tree that is rooted and binary in a suitable sense, a diffuse probability measure on the R-tree that allows us to make sense of sampling points from it, and a kernel on the R-tree that describes the probability that the first of a given pair of points is below and to the left of their most recent common ancestor while the second is below and to the right. Two such ensembles represent the same point in the boundary if for each m the random, rooted, planar, binary trees spanned by m + 1 independent points chosen according to the respective probability measures have the same distribution. Also, the Doob-Martin boundary corresponds bijectively to the set of extreme point of the closed convex set of nonnegative harmonic functions that take the value 1 at the binary tree with 3 vertices; in other words, the minimal and full Doob-Martin boundaries coincide. These results are in the spirit of the identification of graphons as limit objects in the theory of graph limits.
We investigate the asymptotic behaviour of the distribution of the number of comparisons needed by a quicksort-style selection algorithm that finds the lth smallest in a set of n numbers. Letting n tend to infinity and considering the values l = 1, ···,n simultaneously we obtain a limiting stochastic process. This process admits various interpretations: it arises in connection with a representation of real numbers induced by nested random partitions and also in connection with expected path lengths of a random walk in a random environment on a binary tree.
We investigate the asymptotic behaviour of the distribution of the number of comparisons needed by a quicksort-style selection algorithm that finds thelth smallest in a set ofnnumbers. Lettingntend to infinity and considering the valuesl =1, ···,nsimultaneously we obtain a limiting stochastic process. This process admits various interpretations: it arises in connection with a representation of real numbers induced by nested random partitions and also in connection with expected path lengths of a random walk in a random environment on a binary tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.