Non-local correlations between spatially separated systems have been extensively discussed in the context of the Einstein, Podolsky and Rosen (EPR) paradox and Bell's inequalities. Many proposals and experiments designed to test hidden variable theories and the violation of Bell's inequalities have been reported; usually, these involve correlated photons, although recently an experiment was performed with (9)Be(+) ions. Nevertheless, it is of considerable interest to show that such correlations (arising from quantum mechanical entanglement) are not simply a peculiarity of photons. Here we measure correlations between two degrees of freedom (comprising spatial and spin components) of single neutrons; this removes the need for a source of entangled neutron pairs, which would present a considerable technical challenge. A Bell-like inequality is introduced to clarify the correlations that can arise between observables of otherwise independent degrees of freedom. We demonstrate the violation of this Bell-like inequality: our measured value is 2.051 +/- 0.019, clearly above the value of 2 predicted by classical hidden variable theories.
An experimental demonstration of quantum contextuality with neutrons is presented, which intended to exhibit a Kochen-Specker-like phenomenon. Since no perfect correlation is expected in practical experiments, inequalities are derived to distinguish quantitatively the obtained results from predictions by a noncontextual hidden variable theory. Experiments were accomplished with the use of a neutron interferometer combined with spinor manipulation devices. The results clearly violate the prediction of noncontextual theories.
We have observed the stationary interference oscillations of a
triple-entangled neutron state in an interferometric experiment. Time-dependent
interaction with two radio-frequency (rf) fields enables coherent manipulation
of an energy degree of freedom in a single neutron. The system is characterized
by a multiply entangled state governed by a Jaynes-Cummings Hamiltonian. The
experimental results confirm coherence of the manipulation as well as the
validity of the description.Comment: 4 pages, 3 figure
Off-diagonal geometric phases acquired by an evolution of a 1/2-spin system have been observed by means of a polarized neutron interferometer. We have successfully measured the off-diagonal phase for noncyclic evolutions even when the diagonal geometric phase is undefined. Our data confirm theoretical predictions and the results illustrate the significance of the off-diagonal phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.