Escherichia coli hemolysin, a transmembrane pore-forming exotoxin, is considered an important virulence factor. In the present study, the possible significance of hemolysin production was investigated in a model of septic lung failure through infusion of viable bacteria in isolated rabbit lungs; 10(4) to 10(7) E. coli/ml perfusate caused a dose- and time-dependent appearance of hemolysin, accompanied by release of potassium, thromboxane A2, and PGI2 into the perfusate. Concomitantly, marked pulmonary hypertension developed. Inhibitor studies suggested that the pressor response was predominantly mediated by pulmonary thromboxane generation. Administration of hemolysin-forming E. coli additionally caused a protracted, dose-dependent increase in the lung capillary filtration coefficient, followed by severe edema formation. The permeability increase was independent of lung prostanoid generation. An E. coli strain that releases an inactive form of hemolysin completely failed to provoke the described biophysical and biochemical responses. Preapplication of 2 x 10(8) human granulocytes was without effect in the present experimental model. We conclude that the hemolysin produced by low numbers of E. coli organisms can provoke thromboxane-mediated pulmonary hypertension and severe vascular leakage. E. coli hemolysin and, possibly, other related cytolysins may thus contribute directly to the pathogenesis of acute respiratory failure under conditions of sepsis or pneumonia.
SummaryEscherichia coli hemolysin, a transmembrane pore-forming exotoxin, is considered an important virulence factor for E. coli-related extraintestinal infections and sepsis. The possible significance of hemolysin liberation for induction ofinflammatory lipid mediators was investigated in isolated rabbit lungs infused with viable bacteria (concentration range, 104-10'/ml) . Hemolysin-secreting E. coli (E. coli-Hly+), but not an E. coli strain that releases an inactive form of the exotoxin, induced marked lung leukotriene (LT) generation with predominance of cysteinyl Us. Eicosanoid synthesis was not inhibited in the presence ofplasma with toxin-neutralizing capacity. Pre-application of 2 x 10 8 human granulocytes, which sequestered in the lung microvasculature, caused a severalfold increase in leukotriene generation in response to E. coli-Hly+ challenge both in the absence and presence of plasma. Data are presented indicating neutrophil-endothelial cell cooperation in arachidonic acid lipoxygenase metabolism as an underlying mechanism . We conclude that liberation of hemolysin from viable E. coli induces marked lipid mediator generation in lung vasculature, which is potentiated in the presence of neutrophil sequestration and may contribute to microcirculatory disturbances during the course of severe infections .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.