The Neotropical poison frog genus Ranitomeya is revised, resulting in one new genus, one new species, five synonymies and one species classified as nomen dubium. We present an expanded molecular phylogeny that contains 235 terminals, 104 of which are new to this study. Notable additions to this phylogeny include seven of the 12 species in the minuta group, 15 Ranitomeya amazonica, 20 R. lamasi, two R. sirensis, 30 R. ventrimaculata and seven R. uakarii. Previous researchers have long recognized two distinct, reciprocally monophyletic species groups contained within Ranitomeya, sensu Grant et al. 2006: the ventrimaculata group, which is distributed throughout much of the Amazon, and the minuta group of the northern Andes and Central America. We restrict Ranitomeya to the former group and erect a new genus, Andinobates Twomey, Brown, Amézquita & Mejía-Vargas gen. nov., for members of the minuta group. Other major taxonomic results of the current revision include the following: (i) A new species, Ranitomeya toraro Brown, Caldwell, Twomey, Melo-Sampaio & Souza sp. nov., is described from western Brazil. This species has long been referred to as R. ventrimaculata but new morphological and phylogenetic data place it sister to R. defleri. (ii) Examination of the holotype of R. ventrimaculata revealed that this specimen is in fact a member of what is currently referred to as R. duellmani, therefore, Dendrobates duellmani Schulte 1999 is considered herein a junior synonym of D. ventrimaculatus Shreve 1935 (= R. ventrimaculata). (iii) For the frogs that were being called R. ventrimaculata prior to this revision, the oldest available and therefore applicable name is R. variabilis. Whereas previous definitions of R. variabilis were restricted to spotted highland frogs near Tarapoto, Peru, our data suggest that this color morph is conspecific with lowland striped counterparts. Therefore, the definition of R. variabilis is greatly expanded to include most frogs which were (prior to this revision) referred to as R. ventrimaculata. (iv) Phylogenetic and bioacoustic evidence support the retention of R. amazonica as a valid species related to R. variabilis as defined in this paper. Based on phylogenetic data, R. amazonica appears to be distributed throughout much of the lower Amazon, as far east as French Guiana and the Amazon Delta and as far west as Iquitos, Peru. (v) Behavioral and morphological data, as well as phylogenetic data which includes topotypic material of R. sirensis and numerous samples of R. lamasi, suggest that the names sirensis, lamasi and biolat are applicable to a single, widespread species that displays considerable morphological variation throughout its range. The oldest available name for this group is sirensis Aichinger; therefore, we expand the definition of R. sirensis. (vi) Ranitomeya ignea and R. intermedia, elevated to the species status in a previous revision, are placed as junior synonyms of R. reticulata and R. imitator, respectively. (vii) Ranitomeya rubrocephala is designated as nomen dubium. In addition to taxonomic changes, this revision includes the following: (i) Explicit definitions of species groups that are consistent with our proposed taxonomy. (ii) A comprehensive dichotomous key for identification of ‘small’ aposematic poison frogs of South and Central America. (iii) Detailed distribution maps of all Ranitomeya species, including unpublished localities for most species. In some cases, these records result in substantial range extensions (e.g., R. uakarii, R. fantastica). (iv) Tadpole descriptions for R. amazonica, R. flavovittata, R. imitator, R. toraro sp. nov., R. uakarii and R. variabilis; plus a summary of tadpole morphological data for Andinobates and Ranitomeya species. (v) A summary of call data on most members of Andinobates and Ranitomeya, including call data of several species that have not been published before. (vi) A discussion on the continued impacts of the pet trade on poison frogs (vii) A discussion on several cases of potential Müllerian mimicry within the genus Ranitomeya. We also give opinions regarding the current debate on recent taxonomic changes and the use of the name Ranitomeya.
Archäophyten untereinander signifikant höher als die der Einheimischen, wohingegen die Muster der Neophyten signifikant geringere Ähnlichkeiten zeigten. Daher schließen wir, dass Archäophyten zu einer Homogenisierung der Flora beitragen. Allerdings handelt es sich ohnehin meist um Arten der Äcker, also eines vergleichsweise homogenen Lebensraumes. Dagegen führen Neophyten nicht generell zu einer Homogenisierung der Flora sondern erhöhen die Artenvielfalt auf lokaler Ebene.
Critical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CT max; n = 22 species) and critical thermal minimum (CT min; n = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl). After inferring a multilocus species tree, we conducted a phylogenetically informed test of whether body size, body mass, and elevation contributed to the observed variation in CT max and CT min along the gradient. We also tested whether CT max and CT min exhibit different rates of change given that critical thermal limits (and their plasticity) may have evolved differently in response to different temperature constraints along the gradient. Variation of critical thermal traits was significantly correlated with species’ elevational midpoint, their maximum and minimum elevations, as well as the maximum air temperature and the maximum operative temperature as measured across this gradient. Both thermal limits showed substantial variation, but CT min exhibited relatively faster rates of change than CT max, as observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of upper thermal limits and underscore the value of collecting additional empirical data on species’ thermal physiology across elevational gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.