Hexakis(carbonyl)iron(II) undecafluorodiantimonate(V), [Fe(CO)6][Sb2F11]2, is conveniently prepared by the oxidative carbonylation of Fe(CO)5 with XeF2 as external oxidizer in the conjugate Brønsted-Lewis superacid HF−SbF5. The colorless compound crystallizes from the reaction medium in high purity. The molecular structure is obtained by single-crystal X-ray diffraction. The cation is a regular octahedron, while the vertex-shared di-octahedral [Sb2F11]- anion is distorted from D 4 h symmetry by bending and rotational processes, due to significant interionic interactions, primarily of the F···C type. Washing of [Fe(CO)6][Sb2F11]2 with anhydrous HF results in an unusual elution of SbF5 and the quantitative conversion to hexakis(carbonyl)iron(II) hexafluoroantimonate(V) [Fe(CO)6][SbF6]2. The molecular structure of the salt shows octahedral ions with slight tetragonal distortions for the cation (elongation) and the anion (compression). Both salts are thermally stable up to 150 °C. The averaged bond distances and the vibrational wavenumbers of [Fe(CO)6]2+ are nearly identical in both compounds. The [Fe(CO)6]2+ cation, the first and so far only isolated and structurally characterized dipositive, superelectrophilic carbonyl cation formed by a 3d-metal, is further characterized by a normal coordinate analysis (NCA). The obtained force constants are compared to those of the isoelectronic molecule Cr(CO)6. Changes in π-back-bonding affect the F CO/CO and F CO/MC interaction force constants more strongly than the stretching force constants F CO and F MC. All 13 fundamentals of [Fe(CO)6]2+ are detected and assigned with the help of the data obtained from the normal coordinate analysis and density functional calculations published previously. The electronic ground state 1A1g of the [Fe(CO)6]2+ cation is established by magnetic susceptibility measurements of polycrystalline [Fe(CO)6][SbF6]2 and [Fe(CO)6][Sb2F11]2 between 2 and 300 K. The magnetic impurity formed during synthesis is identified as Fe[SbF6]2 which has iron(II) in high spin (5T2g) ground state. Consistent with a diamagnetic ground state are the single line in the 57Fe Mössbauer spectrum (i.s. = −0.003(8) mm s-1 relative to α-Fe), obtained on polycrystalline samples and the single sharp line in the 13C NMR spectrum in DF solution at 178 ppm with J (57Fe-13C) of 19.2 Hz.
The reactions of either bis(mu-chloro)tetracarbonyldirhodium(I), [Rh(CO)2(mu-Cl)]2, or chlorotricarbonyliridium(I), [Ir(CO)3Cl]n, in the conjugate Brønsted-Lewis superacid HF-SbF5 and in a CO atmosphere, produce [Rh(CO)5Cl][Sb2F11]2 or [Ir(CO)5Cl][Sb2F11]2, respectively. In these oxidative carbonylation reactions, antimony(V) fluoride functions as an oxidizing agent. The reduced product is identified as 6SbF3.5SbF5. [Rh(CO)5Cl][Sb2F11]2 is obtained in the form of single crystals. Crystal data: monoclinic, space group P2(1) (No. 4); a = 9.721(1), b = 12.602(1), c = 10.538(1) A; beta = 106.51(1) degrees; V = 1237.7(2) A3; Z = 2; T = 300 K; R1 [I > 3 sigma (I)] = 0.0367, wR2 = 0.0739. Single crystals of [Ir(CO)5Cl][Sb2F11]2 are produced in small amounts from a solution of mer-Ir(CO)3(SO3F)3 in magic acid, HSO3F-SbF5. The possible source of chlorine will be discussed. Crystal data for [Ir-(CO)5Cl][Sb2F11]2: monoclinic, space group P2(1) (No. 4); a = 9.686(2), b = 12.585(2), c = 10.499(2) A; beta = 106.59(2) degrees; V = 1226.5(4) A3; Z = 2; T = 294 K; R1[I > 3 sigma (I)] = 0.032, Rw = 0.031. The bond lengths and bond angles are nearly identical in the two isostructural salts; however, the cell volume of [Ir(CO)5Cl][Sb2F11]2 is slightly smaller than that of [Rh(CO)5Cl][Sb2F11]2. The cations (point group C4v) feature unusually long M-C bonds (M = Rh, Ir) and correspondingly short CO bonds, as well as high CO stretching wavenumbers and high CO stretching force constants. The [Sb2F11]- anions are not symmetry related, and their dihedral and bridge angles differ slightly in both salts. There are significant interionic contacts in [Ir(CO)5Cl][Sb2F11]2 exclusively of the C-F type (about 2 for each C atom of the five carbonyl groups) resulting in extended structures. The vibrational spectra for both [M(CO)5Cl]2+ cations (M = Rh, Ir) are assigned with the help of density functional calculations, which also provide intensities for IR and Raman bands. While [Rh(CO)5Cl]2+ is the first cationic carbonyl derivative of Rh(III), the vibrational and structural parameters for [Ir(CO)5Cl]2+ are compared to data for [Ir(CO)6]3+ and mer-Ir(CO)3(SO3F)3.
Homoleptic octahedral, superelectrophilic sigma-bonded metal carbonyl cations of the type [M(CO)(6)](2+) (M = Ru, Os) are generated in the Bronsted-Lewis conjugate superacid HF/SbF(5) by reductive carbonylation of M(SO(3)F)(3) (M = Ru, Os) or OsF(6). Thermally stable salts form with either [Sb(2)F(11)](-) or [SbF(6)](-) as anion, just as for the previously reported [Fe(CO)(6)](2+) cation. The latter salts are generated by oxidative (XeF(2)) carbonylation of Fe(CO)(5) in HF/SbF(5). A rationale for the two diverging synthetic approaches is provided. The thermal stabilities of [M(CO)(6)][SbF(6)](2) salts, studied by DSC, range from 180 degrees C for M = Fe to 350 degrees C for M = Os before decarbonylation occurs. The two triads [M(CO)(6)][SbF(6)](2) and [M(CO)(6)][Sb(2)F(11)](2) (M = Fe, Ru, Os) are extensively characterized by single-crystal X-ray diffraction and vibrational and (13)C NMR spectroscopy, aided by computational studies of the cations. The three [M(CO)(6)][SbF(6)](2) salts (M = Fe, Ru, Os) crystallize in the tetragonal space group P4/mnc (No. 128), whereas the corresponding [Sb(2)F(11)](-) salts are monoclinic, crystallizing in space group P2(1)/n (No. 14). In both triads, the unit cell parameters are nearly invariant of the metal. Bond parameters for the anions [SbF(6)](-) and [Sb(2)F(11)](-) and their vibrational properties in the two triads are completely identical. In all six salts, the structural and vibrational properties of the [M(CO)(6)](2+) cations (M = Fe, Ru, Os) are independent of the counteranion and for the most part independent of M and nearly identical. Interionic C...F contacts are similarly weak in all six salts. Metal dependency is noted only in the (13)C NMR spectra, in the skeletal M-C vibrations, and to a much smaller extent in some of the C-O stretching fundamentals (A(1g) and T(1u)). The findings reported here are unprecedented among metal carbonyl cations and their salts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.