Motion artifacts can have a detrimental effect on the analysis of chest CT scans, because the artifacts can mimic or obscure genuine pathological features. Localising motion artifacts in the lungs can improve diagnosis quality. The diverse appearance of artifacts requires large quantities of annotations to train a detection model, but manual annotations can be subjective, unreliable, and are labour intensive to obtain. We propose a novel method (code is available at https:// github.com/guusvanderham/artificial-motion-artifacts-for-ct) for generating artificial motion artifacts in chest CT images, based on simulated CT reconstruction. We use these artificial artifacts to train fully convolutional networks that can detect real motion artifacts in chest CT scans. We evaluate our method on scans from the public LIDC, RIDER and COVID19-CT datasets and find that it is possible to train detection models with artificially generated artifacts. Generated artifacts greatly improve performance when the availability of manually annotated scans is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.