We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles.
The fabrication, detailed characterization, and molecular transport properties of nanocomposite membranes containing high fractions (up to 40 vol %) of individually-dispersed aluminosilicate single-walled nanotubes (SWNTs) in poly(vinyl alcohol) (PVA), are reported. The microstructure, SWNT dispersion, SWNT dimensions, and intertubular distances within the composite membranes are characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), XRD rocking curve analysis, small-angle X-ray scattering (SAXS), and solid-state NMR. PVA/SWNT nanocomposite membranes prepared from SWNT gels allow uniform dispersion of individual SWNTs in the PVA matrix with a random distribution of orientations. SAXS analysis reveals the length (∼500 nm) and outer diameter (~2.2 nm) of the dispersed SWNTs. Electron microscopy indicates good adhesion between the SWNTs and the PVA matrix without the occurrence of defects such as voids and pinholes. The transport properties of the PVA/SWNT membranes are investigated experimentally by ethanol/water mixture pervaporation measurements, computationally by grand canonical Monte Carlo and molecular dynamics, and by a macroscopic transport model for anisotropic permeation through nanotube-polymer composite membranes. The nanocomposite membranes substantially enhance the water throughput with increasing SWNT volume fraction, which leads to a moderate reduction of the water/ethanol selectivity. The model is parameterized purely from molecular simulation data with no fitted parameters, and shows reasonably good agreement with the experimental water permeability data.
We report a detailed investigation of the defect structures in aluminosilicate single-walled nanotubes via multiple advanced solid-state NMR techniques. A combination of 1 H− 29 Si and 1 H− 27 Al FSLG-HETCOR, 1 H CRAMPS, and 1 H− 29 Si CP/MAS experiments were employed to evaluate the proton environments around Al and Si atoms in the final nanotube structure. The 1 H CRAMPS spectra of dehydrated aluminosilicate nanotubes revealed the proton environments in great detail. Integration of these results with the findings from the 1 H− 29 Si and 1 H− 27 Al FSLG-HETCOR and 1 H− 29 Si CP/ MAS data allows the structural assignment of all the chemical shifts and the identification of various types of defect structures in the aluminosilicate nanotube wall. In particular, we identify five main types of defect structures arising from specific atomic vacancies in the nanotube structure. It is estimated that ∼16% of Si atoms in the nanotube inner wall are involved in a defect structure. The characterization of the detailed structure of the nanotube wall is expected to have significant implications for its chemical properties and applications.
The distribution and exchange dynamics of phenol molecules in colloidal dispersions of submicron hollow polymeric capsules is investigated by pulsed field gradient NMR (PFG-NMR). The capsules are prepared by layer-by-layer assembly of polyelectrolyte multilayers on silica particles, followed by dissolution of the silica core. In capsule dispersion, (1)H PFG echo decays of phenol are single exponentials, implying fast exchange of phenol between a free site and a capsule-bound site. However, apparent diffusion coefficients extracted from the echo decays depend on the diffusion time, which is typically not the case for the fast exchange limit. We attribute this to a particular regime, where apparent diffusion coefficients are observed, which arise from the signal of free phenol only but are influenced by exchange with molecules bound to the capsule, which exhibit a very fast spin relaxation. Indeed, relaxation rates of phenol are strongly enhanced in the presence of capsules, indicating binding to the capsule wall rather than encapsulation in the interior. We present a quantitative analysis in terms of a combined diffusion-relaxation model, where exchange times can be determined from diffusion and spin relaxation experiments even in this particular regime, where the bound site acts as a relaxation sink. The result of the analysis yields exchange times between free phenol and phenol bound to the capsule wall, which are on the order of 30 ms and thus slower than the diffusion controlled limit. From bound and free fractions an adsorption isotherm of phenol to the capsule wall is extracted. The binding mechanism and the exchange mechanism are discussed. The introduction of the global analysis of diffusion as well as relaxation echo decays presented here is of large relevance for adsorption dynamics in colloidal systems or other systems, where the standard diffusion echo decay analysis is complicated by rapidly relaxing boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.