For tasks involving language and vision, the current state-of-the-art methods tend not to leverage any additional information that might be present to gather relevant (commonsense) knowledge. A representative task is Visual Question Answering where large diagnostic datasets have been proposed to test a system's capability of answering questions about images. The training data is often accompanied by annotations of individual object properties and spatial locations. In this work, we take a step towards integrating this additional privileged information in the form of spatial knowledge to aid in visual reasoning. We propose a framework that combines recent advances in knowledge distillation (teacher-student framework), relational reasoning and probabilistic logical languages to incorporate such knowledge in existing neural networks for the task of Visual Question Answering. Specifically, for a question posed against an image, we use a probabilistic logical language to encode the spatial knowledge and the spatial understanding about the question in the form of a mask that is directly provided to the teacher network. The student network learns from the ground-truth information as well as the teachers prediction via distillation. We also demonstrate the impact of predicting such a mask inside the teachers network using attention. Empirically, we show that both the methods improve the test accuracy over a state-of-the-art approach on a publicly available dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.