Electricity is the most important consideration for individual needs. Natural crossover power architecture using photovoltaic and wind is presented in this study, together with a Cuk direct current-direct current (DC-DC) converter, third phase inverter, and an inductors capacitors (LC) filter. Due to its natural disposal and availability in India, wind power and photovoltaics are ideal for the hybrid system. Hybrid power structures, on the other hand, reduce the risk of damage to equipment in sustainable stock storage since they have a higher electrical output. MATLAB Simulink was used to demonstrate this hybrid application. Before connecting the entire DC voltage frame with the main lattice of the power frame, blocks such as the wind model, PV model, Cuk converter, inverter, and LC channel are built individually. Information limitations for participating in varying levels of irradiance and variations in wind speed. The results show that the hybrid system has a considerably more reliable standard in terms of energy efficiency than an independent framework. Furthermore, the hybrid system's Cuk DC-DC converter, three-phase standard-based inverter, and LC channel can minimise power switching power.
This paper covers the comparison between four different DC-DC converters for solar power conversion. The four converters are buck converter, buck-boost converter, boost converter, and noninverting buck-boost converter. An MPPT algorithm is designed to calculate battery voltage, current of PV array, the voltage of PV array, power of PV array, output power. It is observed that the non-inverting buck-boost converter is the finest converter for solar power conversion. The final circuit design has the results of 12.2V battery voltage, 0.31A current of PV array, 34V voltage of PV array, 23mW power of PV panel, and 21.8mW of output power. The efficiency of this system is nearly 95%. All four circuits are simulated in MATLAB/Simulink R2020b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.