India is endowed with diverse and distinctive traditional water bodies. They support large human population and biodiversity but are under continuous stress, caused primarily by demographic pressure and unplanned growth. There has been a decline in their water quality and quantity and several of them have vanished, thanks to improper monitoring of these water bodies. This research study was conducted in Meerut district to help government in identifying status of traditional water bodies and suggest steps necessary for protection of these water bodies. Similar research framework, with minor customization, could be applied to any other district in India. Meerut district, with a population of around 3.5 million people is in an abysmal state as the rivers and groundwater are highly polluted. The last resort-the traditional water bodies are also getting transformed into sewage ponds. A field based research was undertaken-which involved on-ground survey using GPS, GIS mapping & water quality testing of 120 ponds, distributed across 12 blocks of Meerut district to acquire a practical understanding of the status of these water bodies. The research team also did an informal discussion with around 500 residents, located nearby ponds, to understand the water situation of the locality. Results show that more than 50% of water bodies are severely polluted (with D.O below 5mg/l) and total dissolved solids (more than 100 NTU). Fecal contamination was observed in all the ponds that were analyzed. The major problems are excessive nutrient pollution, leading to eutrophication, and sewage contamination. The spatial analysis finds out that around half the ponds have reduced in area. With around 100 upcoming cities in India and most of the cities already experiencing water scarcity, it is essential to digitize, monitor, control & prevent pollution and most essentially make the people and grassroots institutions aware in order to protect these essential water bodies from getting extinct.
India has the largest area of rainfed dryland agriculture in the world, with a variety of distinct types of rainfed dryland farming systems producing most of its coarse cereals, food legumes, and minor millets, and large amounts of livestock. All these are vital for national and regional food and nutritional security. Yet, the rainfed drylands have been relatively neglected in mainstream agricultural and rural development policy. As a result, significant social-ecological challenges overlap in these landscapes: endemic poverty, malnutrition and land degradation. Sustainable intensification of dryland agriculture is essential for helping to address these challenges, particularly in the context of accelerating climate change. In this paper, we present 100 questions that point to the most important knowledge gaps and research priorities. If addressed, these would facilitate and inform sustainable intensification in Indian rainfed drylands, leading to improved agricultural production and enhanced ecosystem services. The horizon scanning method used to produce these questions brought together 40 experts and practitioners involved in a broad range of disciplines and sectors. This exercise resulted in a consolidated set of questions covering the agricultural drylands, organised into 13 key themes. Together, they represent a collective programme for cross-and multi-disciplinary research on sustainable intensification in the Indian rainfed drylands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.