To study the effects of the control temperature, ablation time, and the background tissue surrounding the tumor on the size of the ablation zone on radiofrequency ablation (RFA) of osteoid osteoma (OO). Finite element models of non‐cooled temperature‐controlled RFA of typical OOs were developed to determine the resulting ablation radius at control temperatures of 70, 80, and 90°C. Three different geometries were used, mimicking common cases of OO. The ablation radius was obtained by using the Arrhenius equation to determine cell viability. Ablation radii were larger for higher temperatures and also increased with time. All geometries and control temperatures tested had ablation radii larger than the tumor. The ablation radius developed rapidly in the first few minutes for all geometries and control temperatures tested, developing slowly towards the end of the ablation. Resistive heating and the temperature distribution showed differences depending on background tissue properties, resulting in differences in the ablation radius on each geometry. The ablation radius has a clear dependency not only on the properties of the tumor but also on the background tissue. Lower background tissue's electrical conductivity and blood perfusion rates seem to result in larger ablation zones. The differences observed between the different geometries suggest the need for patient‐specific planning, as the anatomical variations could cause significantly different outcomes where models like the one here presented could help to guarantee safe and successful tumor ablations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.