Highlights d Exposure to the psychedelic drug DOI results in enduring molecular adaptations d Post-acute DOI unveils phenotypes akin to antidepressant adaptations d Concurrent occurrence of synaptic plasticity mediated via 5-HT
Preclinical findings in rodent models pointed toward activation of metabotropic glutamate 2/3 (mGlu2/3) receptors as a new pharmacological approach to treat psychosis. However, more recent studies failed to show clinical efficacy of mGlu2/3 receptor agonism in schizophrenia patients. We previously proposed that long-term antipsychotic medication restricted the therapeutic effects of these glutamatergic agents. However, little is known about the molecular mechanism underlying the potential repercussion of previous antipsychotic exposure on the therapeutic performance of mGlu2/3 receptor agonists. Here we show that this maladaptive effect of antipsychotic treatment is mediated mostly via histone deacetylase 2 (HDAC2). Chronic treatment with the antipsychotic clozapine led to a decrease in mouse frontal cortex mGlu2 mRNA, an effect that required expression of both HDAC2 and the serotonin 5-HT receptor. This transcriptional alteration occurred in association with HDAC2-dependent repressive histone modifications at the mGlu2 promoter. We found that chronic clozapine treatment decreased via HDAC2 the capabilities of the mGlu2/3 receptor agonist LY379268 to activate G-proteins in the frontal cortex of mice. Chronic clozapine treatment blunted the antipsychotic-related behavioral effects of LY379268, an effect that was not observed in HDAC2 knockout mice. More importantly, co-administration of the class I and II HDAC inhibitor SAHA (vorinostat) preserved the antipsychotic profile of LY379268 and frontal cortex mGlu2/3 receptor density in wild-type mice. These findings raise concerns on the design of previous clinical studies with mGlu2/3 agonists, providing the rationale for the development of HDAC2 inhibitors as a new epigenetic-based approach to improve the currently limited response to treatment with glutamatergic antipsychotics.
Membrane trafficking processes regulate G protein–coupled receptor (GPCR) activity. Although class A GPCRs are capable of activating G proteins in a monomeric form, they can also potentially assemble into functional GPCR heteromers. Here, we showed that the class A serotonin 5-HT2A receptors (5-HT2ARs) affected the localization and trafficking of class C metabotropic glutamate receptor 2 (mGluR2) through a mechanism that required their assembly as heteromers in mammalian cells. In the absence of agonists, 5-HT2AR was primarily localized within intracellular compartments, and coexpression of 5-HT2AR with mGluR2 increased the intracellular distribution of the otherwise plasma membrane–localized mGluR2. Agonists for either 5-HT2AR or mGluR2 differentially affected trafficking through Rab5-positive endosomes in cells expressing each component of the 5-HT2AR–mGluR2 heterocomplex alone, or together. In addition, overnight pharmacological 5-HT2AR blockade with clozapine, but not with M100907, decreased mGluR2 density through a mechanism that involved heteromerization between 5-HT2AR and mGluR2. Using TAT-tagged peptides and chimeric constructs that are unable to form the interclass 5-HT2AR–mGluR2 complex, we demonstrated that heteromerization was necessary for the 5-HT2AR–dependent effects on mGluR2 subcellular distribution. The expression of 5-HT2AR also augmented intracellular localization of mGluR2 in mouse frontal cortex pyramidal neurons. Together, our data suggest that GPCR heteromerization may itself represent a mechanism of receptor trafficking and sorting.
Highlights d Photoactivatable unnatural amino acids inform the structural interface of 5-HT 2A R-mGluR2 d TAG mGluR2 constructs were co-expressed with 5-HT 2A R for photo-crosslinking d UV-induced crosslinking only in cells co-expressing 5-HT 2A R and mGluR2-TAG 4.44 d 5-HT 2A R interacts with mGluR2 via the intracellular end of mGluR2's TM4
Antipsychotic drugs, including both typical such as haloperidol and atypical such as clozapine, remain the current standard for schizophrenia treatment. These agents are relatively effective in treating hallucinations and delusions. However, cognitive deficits are at present essentially either persistent or exacerbated following chronic antipsychotic drug exposure. This underlines the need of new therapeutic approaches to improve cognition in treated schizophrenia patients. Our previous findings suggested that upregulation of histone deacetylase 2 (HDAC2) expression upon chronic antipsychotic treatment may lead to negative effects on cognition and cortical synaptic structure. Here we tested different phenotypes of psychosis, synaptic plasticity, cognition and antipsychotic drug action in HDAC2 conditional knockout (HDAC2-cKO) mice and controls. Conditional depletion of HDAC2 function in glutamatergic pyramidal neurons led to a protective phenotype against behavior models induced by psychedelic and dissociative drugs, such as DOI and MK801, respectively. Immunoreactivity toward synaptophysin, which labels presynaptic terminals of functional synapses, was decreased in the frontal cortex of control mice chronically treated with clozapine - an opposite effect occurred in HDAC2-cKO mice. Chronic treatment with the class I and class II HDAC inhibitor SAHA prevented via HDAC2 the disruptive effects of MK801 on recognition memory. Additionally, chronic SAHA treatment affected transcription of numerous plasticity-related genes in the frontal cortex of control mice, an effect that was not observed in HDAC2-cKO animals. Together, these findings suggest that HDAC2 may represent a novel target to improve synaptic plasticity and cognition in treated schizophrenia patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.