Allostery in proteins is a phenomenon in which the binding of a ligand induces alterations in the activity of remote functional sites. This can be conceptually viewed as point-to-point telecommunication in a networked communication medium, where a signal (ligand) arriving at the input (binding site) propagates through the network (interconnected and interacting atoms) to reach the output (remote functional site). The reliable transmission of the signal to distal points occurs despite all the disturbances (noise) affecting the protein. Based on this point of view, we propose a computational frequency-domain framework to characterize the displacements and the fluctuations in a region within the protein, originating from the ligand excitation at the binding site and noise, respectively. We characterize the displacements in the presence of the ligand, and the fluctuations in its absence. In the former case, the effect of the ligand is modeled as an external dynamic oscillatory force excitation, whereas in the latter, the sole source of fluctuations is the noise arising from the interactions with the surrounding medium that is further shaped by the internal protein network dynamics. We introduce the excitation frequency as a key factor in a Signal-to-Noise ratio (SNR) based analysis, where SNR is defined as the ratio of the displacements stemming from only the ligand to the fluctuations due to noise alone. We then employ an information-theoretic (communication) channel capacity analysis that extends the SNR based characterization by providing a route for discovering new allosteric regions. We demonstrate the potential utility of the proposed methods for the representative PDZ3 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.