Previous studies indicate that agonists of the group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, may provide a novel approach for the treatment of anxiety disorders and schizophrenia. However, the relative contributions of the mGluR2 and mGluR3 subtypes to the effects of the group II mGluR agonists remain unclear. In the present study, we describe an alternate synthesis and further pharmacological characterization of a recently reported positive allosteric modulator of mGluR2 termed biphenyl-indanone A (BINA). In recombinant systems, BINA produced a robust and selective potentiation of the response of mGluR2 to glutamate with no effect on the glutamate response of other mGluR subtypes. In hippocampal brain slices, BINA (1 M) significantly potentiated the mGluR2/3 agonist-induced inhibition of excitatory synaptic transmission at the medial perforant path-dentate gyrus synapse. BINA was also efficacious in several models predictive of antipsychotic-and anxiolytic-like activity in mice. The behavioral effects of BINA were blocked by the mGluR2/3 antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), suggesting that the in vivo effects of BINA are mediated by increased activation of mGluR2. Collectively, these results indicate that BINA is a selective mGluR2 positive allosteric modulator and provide further support for the growing evidence that selective allosteric potentiators of mGluR2 mimic many of the in vivo actions of mGluR2/3 agonists that may predict therapeutic utility of these compounds.Metabotropic glutamate receptors (mGluRs) are classified into three major groups based on sequence homologies, coupling to second messenger systems, and selectivities for various agonists (Conn and Pin, 1997). Group II mGluR subtypes, mGluR2 and mGluR3, couple to G i/o and associated effector pathways, such as the inhibition of adenylyl cyclase and the regulation of ion channels. Group II mGluRs reduce transmission at glutamatergic synapses in multiple brain regions, where excessive glutamatergic neurotransmission has been implicated in the underlying pathophysiology of anxiety disorders and schizophrenia (Walker and Davis, 2002;Moghaddam and Jackson, 2003). Based on these findings, it has been postulated that selective agonists of group II mGluRs may provide anxiolytic and/or antipsychotic effects through a reduction in glutamatergic neurotransmission within these brain regions.
Exciting advances have been made in the discovery of selective positive allosteric modulators of the metabotropic glutamate receptor (mGluR) mGluR5. These compounds may provide a novel approach that could be useful in the treatment of certain central nervous system disorders. However, because of their low potencies, previously described mGluR5 potentiators are not useful for functional studies in native preparations. In addition, binding sites at which these compounds act have not been identified. It has been suggested that two allosteric potentiators, 3,3Ј-difluorobenzaldazine and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), act by binding to the same allosteric site as the negative allosteric modulators of mGluR5 such as 2-methyl-6-(phenylethynyl)pyridine (MPEP). However, another mGluR5 potentiator, N- {4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide, does not bind to this site, bringing this hypothesis into question. We have synthesized a series of CDPPB analogs and report that these compounds bind to the MPEP site with affinities that are closely related to their potencies as mGluR5 potentiators. Furthermore, allosteric potentiation is antagonized by a neutral ligand at the MPEP site and reduced by a mutation of mGluR5 that eliminates MPEP binding. Together, these data suggest that interaction with the MPEP site is important for allosteric potentiation of mGluR5 by CDPPB and related compounds. In addition, whole-cell patch-clamp studies in midbrain slices reveal that a highly potent analog of CDPPB, 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-29), selectively potentiates mGluR5 but not mGluR1-mediated responses in midbrain neurons, whereas a previously identified allosteric potentiator of mGluR1 has the opposite effect.Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. In addition to eliciting fast excitatory synaptic responses, glutamate has important neuromodulatory effects by the activation of G protein-coupled receptors (GPCRs) termed metabotropic glutamate receptors (mGluRs). The mGluRs play important roles in a broad range of central nervous system functions and have potential as novel targets for the development of new therapeutic agents for a number of neurological and psychiatric disorders, including Parkinson's disease (Marino
Group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, play a number of important roles in mammalian brain and represent exciting new targets for certain central nervous system disorders. We now report synthesis and characterization of a novel family of derivatives of dihydrobenzo[1,4]diazepin-2-one that are selective negative allosteric modulators for group II mGluRs. These compounds inhibit both mGluR2 and mGluR3 but have no activity at group I and III mGluRs. The novel mGluR2/3 antagonists also potently block mGluR2/3-mediated inhibition of the field excitatory postsynaptic potentials at the perforant path synapse in hippocampal slices. These compounds induce a rightward shift and decrease the maximal response in the glutamate concentrationresponse relationship, consistent with a noncompetitive antagonist mechanism of action. Furthermore, radioligand binding studies revealed no effect on binding of the orthosteric antag-Site-directed mutagenesis revealed that a single point mutation in transmembrane V (N735D), previously shown to be an important residue for potentiation activity of the mGluR2 allosteric potentiator LY487379 [N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine], is not critical for the inhibitory activity of negative allosteric modulators of group II mGluRs. However, this single mutation in human GluR2 almost completely blocked the enhancing activity of biphenyl-indanone A, a novel allosteric potentiator of mGluR2. Our data suggest that these two positive allosteric modulators of mGluR2 may share a common binding site and that this site may be distinct from the binding site for the new negative allosteric modulators of group II mGluRs.The eight known subtypes of metabotropic glutamate receptors (mGluRs) have been classified based on sequence homology, pharmacology, and signal transduction. These include group I (mGluR1 and 5), group II (mGluR2 and 3), and group III receptors (mGluR4, 6, 7, and 8). The group I receptors couple to G ␣q and phospholipase C, whereas group II and group III mGluRs couple to G ␣i (Conn and Pin, 1997;Schoepp et al., 1999). A large body of in vitro and in vivo preclinical studies suggest that specific mGluR subtypes play a broad range of neuromodulatory roles in different central nervous system circuits and that specific subtypes may provide viable targets for novel treatment strategies for a range of neurological and psychiatric disorders, including anxiety (Linden
We recently reported a novel class of compounds, represented by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CD-PPB), that act as positive allosteric modulators (potentiators) of metabotropic glutamate receptor (mGluR) subtype 5. Studies of CDPPB analogs revealed that some compounds in this series serve also as positive allosteric modulators of mGluR1. Although CDPPB is selective for mGluR5 relative to other mGluR subtypes, several CDPPB analogs also showed 2.5-fold potentiation of glutamate-induced calcium transients in cells expressing mGluR1 at 10 M, with 4-nitro-N-(1,4-diphenyl-1H-pyrazol-5-yl)benzamide (VU-71) being selective for mGluR1. In previous studies, we found that two structural classes of mGluR5-selective allosteric potentiators, including CDPPB, share a common binding site with the allosteric mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine. Negative allosteric modulators of mGluR1, regardless of structural class, have been reported to bind to a common allosteric antagonist site on this receptor. However, neither the novel CDPPB analogs nor previously identified allosteric mGluR1 potentiators [e.g., (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine (Ro 67-7476), ethyl diphenylacetylcarbamate (Ro 01-6128), and butyl (9H-xanthene-9-carbonyl)carbamate (Ro 67-4853)] displaced the binding of [, a high-affinity radioligand for the allosteric antagonist site on mGluR1 at concentrations several orders of magnitude higher than those required to induce allosteric potentiation of mGluR1 responses. These data suggest that allosteric potentiators of mGluR1 act at a site that is distinct from that of allosteric antagonists of mGluR1. Sitedirected mutagenesis revealed that valine at position 757 in transmembrane V of mGluR1a is crucial for the activity of multiple classes of allosteric mGluR1 potentiators.In the mammalian central nervous system, glutamate is the major excitatory neurotransmitter, exerting its effects through activation of two major classes of glutamate receptors. These include cation channels, termed ionotropic glutamate receptors, and G protein-coupled receptors, termed metabotropic glutamate receptors (mGluRs) (Conn and Pin, 1997). The mGluRs are members of G protein-coupled receptor family 3, which consist of a large bilobed N-terminal extracellular domain containing the orthosteric agonist binding site, a seven-transmembrane domain, and a C-terminal intracellular domain (Gasparini et al
CDPPB [3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide] was recently described as the first centrally active, positive allosteric modulator of rat and human metabotropic glutamate receptor (mGluR) mGluR5 subtype. We explored the structural requirements for potentiation of glutamate-induced calcium release in naturally expressed mGluR5 in cultured rat astrocytes and increasing affinity for the allosteric antagonist binding site by evaluating 50 analogues of CDPPB. In the fluorometric calcium assay, CDPPB exhibited an EC50 value of 77 +/- 15 nM in potentiating mGluR5-mediated responses in cortical astrocytes and a Ki value of 3760 +/- 430 nM in displacing [3H]methoxyPEPy binding in membranes of cultured HEK-293 cells expressing rat mGluR5. The structure-activity relationships showed that electronegative aromatic substituents in the para-position of the benzamide moiety of CDPPB increase potency. Both binding and functional activities were further increased with a halogen atom in the ortho-position of the 1-phenyl ring. These effects of substitution do not match those of either aromatic ring of MPEP [2-methyl-6-(phenylethynyl)pyridine] for the antagonist allosteric binding site. Combination of the optimal substituents and aromatic positions resulted in 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide (VU-1545) showing Ki = 156 +/- 29 nM and EC50 = 9.6 +/- 1.9 nM in the binding and functional assays, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.