Three prime repair exonuclease 1 (TREX1) is an essential exonuclease in mammalian cells, and numerous in vivo and in vitro data evidenced its participation in immunity regulation and in genotoxicity remediation. In these very complicated cellular functions, the molecular mechanisms by which duplex DNA substrates are processed are mostly elusive because of the lack of structure information. Here, we report multiple crystal structures of TREX1 complexed with various substrates to provide the structure basis for overhang excision and terminal unwinding of DNA duplexes. The substrates were designed to mimic the intermediate structural DNAs involved in various repair pathways. The results showed that the Leu24-Pro25-Ser26 cluster of TREX1 served to cap the nonscissile 5′-end of the DNA for precise removal of the short 3′-overhang in L- and Y-structural DNA or to wedge into the double-stranded region for further digestion along the duplex. Biochemical assays were also conducted to demonstrate that TREX1 can indeed degrade double-stranded DNA (dsDNA) to a full extent. Overall, this study provided unprecedented knowledge at the molecular level on the enzymatic substrate processing involved in prevention of immune activation and in responses to genotoxic stresses. For example, Arg128, whose mutation in TREX1 was linked to a disease state, were shown to exhibit consistent interaction patterns with the nonscissile strand in all of the structures we solved. Such structure basis is expected to play an indispensable role in elucidating the functional activities of TREX1 at the cellular level and in vivo.
Loss of tumor suppressor activity and upregulation of oncogenic pathways simultaneously contribute to tumorigenesis. Expression of the tumor suppressor, GCIP (Grap2-and cyclin D1-interacting protein), is usually reduced or lost in advanced cancers, as seen in both mouse tumor models and human cancer patients. However, no previous study has examined how cancer cells down-regulate GCIP expression.In this study, we first validate the tumor suppressive function of GCIP using clinical gastric cancer tissues and online database analysis. We then reveal a novel mechanism whereby MEK2 directly interacts with and phosphorylates GCIP at its Ser313 and Ser356 residues to promote the turnover of GCIP by ubiquitin-mediated proteasomal degradation. We also reveal that decreased GCIP stability enhances cell proliferation and promotes cancer cell migration and invasion. Taken together, these findings provide a more comprehensive view of GCIP in tumorigenesis and suggest that the oncogenic MEK/ERK signaling pathway negatively regulates the protein level of GCIP to promote cell proliferation and migration.
K E Y W O R D SGCIP, MEK2, tumor suppressor, ubiquitination
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.