Abstract. In this paper, compliant Ortho-planar spring was designed based on a three-dimensional topology optimization method. The computation was developed using MATLAB programming. The objective of this work was to apply dual method to design an Ortho-planar spring while the design should have minimum mass and at the same time satisfy a set of constrained displacement. Throughout this paper, we analyzed a method for designing an Ortho-planar spring using linear elastic material and hyperelastic material. The results showed that under small displacement conditions, the output displacement, maximum stress magnitude, and the maximum stress of linear elastic assumption and hyper-elastic material were relatively close to each other. However, the mass fraction and the layout as the result of the optimization process was different. As for larger displacement, the maximum stress of linear elastic material appeared 2.59 times higher than the maximum stress of the hyper-elastic material model. The topology optimization output based on linear material was invalid because the topology of the computed Ortho-planar spring was not appeared as a one-piece layout while the design based on nonlinear material looked promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.