The recent serial section electron microscopic studies by Adamson and Michel (1993) on microves gels of frog mesentery have revealed that the large pores in the junction strand of the interendothelial cleft are widely separated 150 nm wide orifice-like breaks whose gap height 20 nm is the same as the wide part of the cleft. In this paper a modified version of the model in Weinbaum et al. (1992) is first developed in which this orifice structure is explored in combination with a random or ordered fiber matrix layer that is at the luminal surface and/or occupies a fraction of the wide part of the cleft. This basic orifice model predicts that for the measured Lp to be achieved the fiber layer must be confined to a relatively narrow region at the entrance to the cleft where it serves as the primary molecular filter. The model provides a much better fit of the permeability P for intermediate size solutes between 1 and 2 nm radius than the previous model in Weinbaum et al., where the junction strand breaks were treated as finite depth circular or rectangular pores, but like the previous model significantly underestimates P for small ions. However, it is shown that if a small frequent pore of 1.5 nm radius with characteristic spacing comparable to the diameter of the junction proteins or a continuous narrow slit of approximately 1.5 to 2.3 nm gap height is also present in the continuous part of the junction strand, small ion permeability can also be satisfied. The 1.5 nm radius pore does not significantly change Lp, whereas the continuous narrow slit provides a contribution to Lp that is comparable to, or in the case of the 2.3 nm slit greater than, the widely spaced 150 nm orifices. Thus, for the narrow slit the contribution to Lp from the orifices can be as low as 1.0 x 10(-7) cm/s/cm H2O and it is also possible to satisfy the 2.5 fold increase in permeability that occurs when the matrix is enzymatically removed from the luminal side of the cleft, Adamson (1990). The likelihood of each of these cleft structures is discussed.
A general solution of the three-dimensional Stokes equations is developed for the viscous flow past a square array of circular cylindrical fibres confined between two parallel walls. This doubly periodic solution, which is an extension of the theory developed by Lee & Fung (1969) for flow around a single fibre, successfully describes the transition in behaviour from the Hele-Shaw potential flow limit (aspect ratio B [Lt ] 1) to the viscous two-dimensional limiting case (B [Gt ] 1, Sangani & Acrivos 1982) for the hydrodynamic interaction between the fibres. These results are also compared with the solution of the Brinkman equation for the flow through a porous medium in a channel. This comparison shows that the Brinkman approximation is very good when B > 5, but breaks down when B [les ] O(1). A new interpolation formula is proposed for this last regime. Numerical results for the detailed velocity profiles, the drag coefficient f, and the Darcy permeability Kp are presented. It is shown that the velocity component perpendicular to the parallel walls is only significant within the viscous layers surrounding the fibres, whose thickness is of the order of half the channel height B′. One finds that when the aspect ratio B > 5, the neglect of the vertical velocity component vz can lead to large errors in the satisfaction of the no-slip boundary conditions on the surfaces of the fibres and large deviations from the approximate solution in Lee (1969), in which vz and the normal pressure field are neglected. The numerical results show that the drag coefficient of the fibrous bed increases dramatically when the open gap between adjacent fibres Δ′ becomes smaller than B′. The predictions of the new theory are used to examine the possibility that a cross-bridging slender fibre matrix can exist in the intercellular cleft of capillary endothelium as proposed by Curry & Michel (1980).
Two phase transitions, G−LE and LE−LC, of the adsorbed monolayer of the soluble surfactant 1-dodecanol
at the air−water interface were observed from the dynamic surface tension measurement by using a pendant
bubble tensiometer. Two constant surface-tension (γ) regions were detected in the dynamic surface-tension
γ(t) profiles of different surfactant concentrations at 20 °C. They are at π = 0.75 and 17.9 mN/m. A constant
γ region in dynamic γ(t) profiles indicates the existence of a 2D phase transition. These 2D phase transitions
of adsorbed layer are presumed to be the coexistence of the gas (G) and liquid-expanded (LE) phases and
that of the LE and liquid-condensed (LC) phases. A new phase-transition isotherm, which is possible to
describe the 1-dodecanol adsorbed monolayer, is also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.