The chemical risk of pesticides for nontarget soil macroorganisms has mainly been assessed using the compost earthworm Eisenia fetida. However, E. fetida does not occur in agroecosystems, and it is generally less sensitive than other earthworm species. Thus, the extrapolation of its response to pesticides to other earthworm species may lead to uncertainties in risk assessment. Because toxicity data for other earthworms are scarce, we assessed the chemical sensitivity of five species (Allolobophora chlorotica, Aporrectodea caliginosa, Aporrectodea longa, Aporrectodea rosea, and Lumbricus rubellus) from different habitats (forests, wetlands, and grasslands), as well as E. fetida, to imidacloprid and copper in single‐species acute toxicity tests. In addition, we examined the relationship between earthworm traits (ecotype and weight), habitat characteristics (ecosystem type and soil pH), and chemical sensitivity. The lower limits of the hazardous concentration affecting 5% (HC5) of species were 178.99 and 0.32 mg active ingredient/kg dry weight for copper and imidacloprid, respectively. Some concentrations that have been measured in European agroecosystems for both pesticides were above the HC5s, indicating toxic risks for these organisms. Furthermore, soil pH from the sampling habitat played a significant role, with earthworms sampled from extremely acidic soils being less sensitive to copper than earthworms from neutral soils. In addition, endogeic earthworms were more sensitive to imidacloprid than epigeic earthworms. This may translate to changes in soil functions such as bioturbation, which is mainly carried out by endogeic earthworms. Our results suggest that risk assessment should include a wider range of earthworms covering different habitats and ecosystem functions to achieve a better protection of the biological functions carried out by these key soil organisms. Environ Toxicol Chem 2023;42:939–947. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.