The pore structure of rock has a great influence on its physical and mechanical properties. Factors such as chemical corrosion and temperature changes affect the pore structure evolution. In this paper, the pore structure of sandstone was investigated under rapid freeze-thaw (F-T) cycles and chemical corrosion. A nuclear magnetic resonance (NMR) testing system is used to study the pore structure of tight sandstone samples immersed in different chemical solutions after 10, 20, and 30 F-T cycles. Permeability is determined by using empirical method. Results found that permeability is strongly affected by the erosion of NaOH and NaCl solutions. The pores in the rock were divided into three categories based on the pore size, i.e., minipores, mesopores, and macropores. The results showed that the amount of mini-pores and mesopores both decreased with an increase in the number of F-T cycles while the amount of macropores increased for groups of NaOH, NaCl, and pure water. No conclusive trend can be found in the H 2 SO 4 group. Fractal analysis of the pore structure revealed that no conclusive trend was observed for fractal dimension of mini-pores D 1 . Fractal dimension of mesopores D 2 ranged from 2.79 to 2.93, indicating a medium complexity pore structure of the mesopores. Fractal dimension of macropores D 3 was over 2.9, implying that the pore structure of the macropores is the most complex. The fractal dimension of the T 2 spectrum D NMR ranged from 2.55 to 2.77. Correlations between the fractal dimensions and porosity are also presented. Results showed that D 2 and D 3 can be good indicators for the pore size volume of sandstone samples immersed in H 2 SO 4 , NaOH and NaCl solutions, while D NMR is a good indicator for the pore size volume of sandstone samples immersed in NaOH solution and pure water.INDEX TERMS Pore structure, freeze-thaw, chemical corrosion, nuclear magnetic resonance, fractal analysis.
Chemical corrosion has a significant impact on the damage evolution behavior of rock. To investigate the mechanical damage evolution process of rock under a coupled chemical-mechanical (CM) condition, an improved statistical damage constitutive model was established using the Drucker-Prager (D-P) strength criterion and two-parameter Weibull distribution. The damage variable correction coefficient and chemical damage variable which was determined by porosity were also considered in the model. Moreover, a series of conventional triaxial compressive tests were carried out to investigate the mechanical properties of sandstone specimens under the effect of chemical corrosion. The relationship between rock mechanics properties and confining pressure was also explored to determine Weibull distribution parameters, including the shape parameter m and scale parameter F0. Then, the reliability of the damage constitutive model was verified based on experimental data. The results of this study are as follows: (i) the porosity of sandstone increased and the mechanical properties degraded after chemical corrosion; (ii) the relationships among the compressive strength, the peak axial strain, and confining pressures were linear, while the relationships among the elastic modulus, the residual strength, and confining pressures were exponential functions; and (iii) the improved statistical damage constitutive model was in good agreement with the testing curves with R2>0.98. It is hoped that the study can provide an alternative method to analyze the damage constitutive behavior of rock under a coupled chemical-mechanical condition.
Abstract:In order to investigate the high volume fraction problem of the solid phase in superfine unclassified backfilling pipeline transportation, characteristic parameters were obtained by fitting to test data with an R-R particle size distribution function; then, a Euler dense-phase DPM (Discrete phase model) model was established by applying solid-liquid two-phase flow theory and the kinetic theory of granular flow (KTGF). The collision and friction of particles were imported by the UDF (User-define function) function, and the pipeline fluidization system, dominated by interphase drag forces, was analyzed. The best concentration and flow rate were finally obtained by comparing the results of the stress conditions, flow field characteristics, and the discrete phase distributions. It is revealed that reducing the concentration and flow rate could control pressure loss and pipe damage to a certain degree, while lower parameters show negative effects on the transportation integrity and backfilling strength. Indoor tests and field industrial tests verify the reliability of the results of the numerical simulations. Research shows that the model optimization method is versatile and practical for other, similar, complex flow field working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.