Light sensors are widely used to monitor light intensities, for instance in medical applications, in agriculture or for conservation of art. Most of these sensors are electronic devices that record continuously but applications that only require information of integrated intensities, measured over a long time, could greatly benefit from an integrating dosimeter that does not require a power supply. In this work a wireless and quantitative light dosimeter is presented based on SrAl 2 O 4 :Eu 2+ ,Sm 3+ , a phosphor that exhibits stable energy storage upon exposure to blue and ultraviolet light. It is shown that a forward electron transfer from europium to samarium can be induced under illumination with blue or ultraviolet light while the reverse electron transfer can be achieved by illuminating the phosphors with green to infrared light. This reverse transfer is accomplished through excitation of the divalent samarium and results in bright, green optically stimulated luminescence. The stable energy storage, in combination with the possibility for optical read-out, makes SrAl 2 O 4 :Eu 2+ ,Sm 3+ ideally suited to be used as an integrating light dosimeter for monochromatic to broadband light, from the ultraviolet to the near infrared. To demonstrate this, a proof of concept dosimeter was developed in which this phosphor was successfully used to measure average daylight intensities.
Nowadays, lab-on-chip (LOC) devices are attracting more and more attention since they show vast prospects for various biomedical applications. Usually, an LOC is a small device that serves a single laboratory function. LOCs show massive potential for organ-on-chip (OOC) device manufacturing since they could allow for research on the avoidance of various diseases or the avoidance of drug testing on animals or humans. However, this technology is still under development. The dominant technique for the fabrication of such devices is molding, which is very attractive and efficient for mass production, but has many drawbacks for prototyping. This article suggests a femtosecond laser microprocessing technique for the prototyping of an OOC-type device—a liver-on-chip. We demonstrate the production of liver-on-chip devices out of glass by using femtosecond laser-based selective laser etching (SLE) and laser welding techniques. The fabricated device was tested with HepG2(GS) liver cancer cells. During the test, HepG2(GS) cells proliferated in the chip, thus showing the potential of the suggested technique for further OOC development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.