Current evidence on exercise-mediated AMPK regulation in skeletal muscle of patients with type 2 diabetes (T2D) is inconclusive. This may relate to inadequate segregation of trimeric complexes in the investigation of AMPK activity. We examined the regulation of AMPK and downstream targets ACC-b, TBC1D1, and TBC1D4 in muscle biopsy specimens obtained from 13 overweight/obese patients with T2D and 14 weight-matched male control subjects before, immediately after, and 3 h after exercise. ences in these responses were observed between patients with T2D and control subjects. Subjects were also studied by euglycemic-hyperinsulinemic clamps performed at rest and 3 h after exercise. We found no evidence for insulin to regulate AMPK activity. Thus, AMPK signaling is not compromised in muscle of patients with T2D during exercise and insulin stimulation. Our results reveal a hitherto unrecognized activation of specific AMPK complexes in exercise recovery. We hypothesize that the differential regulation of AMPK complexes plays an important role for muscle metabolism and adaptations to exercise.
Urinary extracellular vesicles (uEVs) are a heterogenous group of vesicles consisting mainly of microvesicles and exosomes that originate predominantly (99.96%) from kidney, the urinary tract epithelium and the male reproductive tract. Secreted EVs contain molecular cargo from parental cells and provide an attractive source for biomarkers, a potential readout of physiological and pathophysiological mechanisms, and events associated with the urinary system. uEVs are readily enriched and isolated from urine samples and we review 6 standard methods that allow for downstream analysis of the uEV cargo. Although the use of uEVs as a surrogate readout for physiological changes in tissue protein levels is widespread, the protein abundance in uEVs is affected significantly by mechanisms that regulate protein sorting and secretion in uEVs. Data suggest that baseline kidney tissue and uEV levels of apical membrane-associated electrolyte transport proteins are not directly related in human patients. Recent evidence indicates that EVs may contribute to physiological and pathophysiological intercellular signalling and EVs confer protection against renal ischemia-reperfusion injury. The therapeutic use of EVs as information carriers has mainly been explored in vitro and a major hurdle lies in the translation of the in vitro findings into an in vivo setting. Thus, the EV research field is moving from a technical focus to a more physiological focus, allowing for a deeper understanding of human physiology, development of diagnostic tools and potential treatment strategies for precision medicine.
K E Y W O R D S
exosomes, intercellular communication, microvesicles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.