Abstract. This paper proposes a novel hybrid forecasting model known as GLSSVM, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM). The GMDH is used to determine the useful input variables which work as the time series forecasting for the LSSVM model. Monthly river flow data from two stations, the Selangor and Bernam rivers in Selangor state of Peninsular Malaysia were taken into consideration in the development of this hybrid model. The performance of this model was compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA), GMDH and LSSVM models using the long term observations of monthly river flow discharge. The root mean square error (RMSE) and coefficient of correlation (R) are used to evaluate the models' performances. In both cases, the new hybrid model has been found to provide more accurate flow forecasts compared to the other models. The results of the comparison indicate that the new hybrid model is a useful tool and a promising new method for river flow forecasting.
A new method based on integrating discrete wavelet transform and artificial neural networks (WANN) model for daily crude oil price forecasting is proposed. The discrete Mallat wavelet transform is used to decompose the crude price series into one approximation series and some details series (DS). The new series obtained by adding the effective one approximation series and DS component is then used as input into the ANN model to forecast crude oil price. The relative performance of WANN model was compared to regular ANN model for crude oil forecasting at lead times of 1 day for two main crude oil price series, West Texas Intermediate (WTI) and Brent crude oil spot prices. In both cases, WANN model was found to provide more accurate crude oil prices forecasts than individual ANN model.
Nowadays, remote sensing technology is being used as an essential tool for monitoring and detecting oil spills to take precautions and to prevent the damages to the marine environment. As an important branch of remote sensing, satellite based synthetic aperture radar imagery (SAR) is the most effective way to accomplish these tasks. Since a marine surface with oil spill seems as a dark object because of much lower backscattered energy, the main problem is to recognize and differentiate the dark objects of oil spills from others to be formed by oceanographic and atmospheric conditions. In this study, Radarsat-1 images covering Lebanese coasts were employed for oil spill detection. For this purpose, a powerful classifier, Artificial Neural Network Multilayer Perceptron (ANN MLP) was used. As the original contribution of the paper, the network was trained by a novel heuristic optimization algorithm known as Artificial Bee Colony (ABC) method besides the conventional Backpropagation (BP) and Levenberg-Marquardt (LM) learning algorithms. A comparison and evaluation of different network training algorithms regarding reliability of detection and robustness show that for this problem best result is achieved with the Artificial Bee Colony algorithm (ABC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.